skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SpaceMediator: Leveraging Authorization Policies to Prevent Spatial and Privacy Attacks in Mobile Augmented Reality
Mobile Augmented Reality (MAR) is a portable, powerful, and suitable technology that integrates digital content, e.g., 3D virtual objects, into the physical world, which not only has been implemented for multiple intents such as shopping, entertainment, gaming, etc., but it is also expected to grow at a tremendous rate in the upcoming years. Unfortunately, the applications that implement MAR, hereby referred to as MAR-Apps, bear security issues, which have been imaged in worldwide incidents such as robberies, which has led authorities to ban MAR-Apps at specific locations. Existing problems with MAR-Apps can be classified into three categories: first, Space Invasion, which implies the intrusive modification through MAR of sensitive spaces, e.g., hospitals, memorials, etc. Second, Space Affectation, which involves the degradation of users' experience via interaction with undesirable MAR or malicious entities. Finally, MAR-Apps mishandling sensitive data leads to Privacy Leaks. To alleviate these concerns, we present an approach for Policy-Governed MAR-Apps, which allows end-users to fully control under what circumstances, e.g., their presence inside a given sensitive space, digital content may be displayed by MAR-Apps. Through SpaceMediator, a proof-of-concept MAR-App that imitates the well-known and successful MAR-App Pokemon GO, we evaluated our approach through a user study with 40 participants, who recognized and prevented the issues just described with success rates as high as 92.50%. Furthermore, there is an enriched interest in Policy-Governed MAR-Apps as 87.50% of participants agreed with it, and 82.50% would use it to implement content-based restrictions in MAR-Apps These promising results encourage the adoption of our solution in future MAR-Apps.  more » « less
Award ID(s):
1828010 2232911
PAR ID:
10432743
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SACMAT '23: Proceedings of the 28th ACM Symposium on Access Control Models and Technologies
Page Range / eLocation ID:
79 to 90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Abstract: Users trust IoT apps to control and automate their smart devices. These apps necessarily have access to sensitive data to implement their functionality. However, users lack visibility into how their sensitive data is used, and often blindly trust the app developers. In this paper, we present IoTWATcH, a dynamic analysis tool that uncovers the privacy risks of IoT apps in real-time. We have designed and built IoTWATcH through a comprehensive IoT privacy survey addressing the privacy needs of users. IoTWATCH operates in four phases: (a) it provides users with an interface to specify their privacy preferences at app install time, (b) it adds extra logic to an app’s source code to collect both IoT data and their recipients at runtime, (c) it uses Natural Language Processing (NLP) techniques to construct a model that classifies IoT app data into intuitive privacy labels, and (d) it informs the users when their preferences do not match the privacy labels, exposing sensitive data leaks to users. We implemented and evaluated IoTWATcH on real IoT applications. Specifically, we analyzed 540 IoT apps to train the NLP model and evaluate its effectiveness. IoTWATcH yields an average 94.25% accuracy in classifying IoT app data into privacy labels with only 105 ms additional latency to an app’s execution. 
    more » « less
  2. Furnell, Steven (Ed.)
    A huge amount of personal and sensitive data is shared on Facebook, which makes it a prime target for attackers. Adversaries can exploit third-party applications connected to a user’s Facebook profile (i.e., Facebook apps) to gain access to this personal information. Users’ lack of knowledge and the varying privacy policies of these apps make them further vulnerable to information leakage. However, little has been done to identify mismatches between users’ perceptions and the privacy policies of Facebook apps. We address this challenge in our work. We conducted a lab study with 31 participants, where we received data on how they share information in Facebook, their Facebook-related security and privacy practices, and their perceptions on the privacy aspects of 65 frequently-used Facebook apps in terms of data collection, sharing, and deletion. We then compared participants’ perceptions with the privacy policy of each reported app. Participants also reported their expectations about the types of information that should not be collected or shared by any Facebook app. Our analysis reveals significant mismatches between users’ privacy perceptions and reality (i.e., privacy policies of Facebook apps), where we identified over-optimism not only in users’ perceptions of information collection, but also on their self-efficacy in protecting their information in Facebook despite experiencing negative incidents in the past. To the best of our knowledge, this is the first study on the gap between users’ privacy perceptions around Facebook apps and the reality. The findings from this study offer directions for future research to address that gap through designing usable, effective, and personalized privacy notices to help users to make informed decisions about using Facebook apps. 
    more » « less
  3. Android’s flexible communication model allows interactions among third-party apps, but it also leads to inter-app security vulnerabilities. Specifically, malicious apps can eavesdrop on interactions between other apps or exploit the functionality of those apps, which can expose a user’s sensitive information to attackers. While the state-of-the-art tools have focused on detecting inter-app vulnerabilities in Android, they neither accurately analyze realistically large numbers of apps nor effectively deliver the identified issues to users. This paper presents SEALANT, a novel tool that combines static analysis and visualization techniques that, together, enable accurate identification of inter-app vulnerabilities as well as their systematic visualization. SEALANT statically analyzes architectural information of a given set of apps, infers vulnerable communication channels where inter-app attacks can be launched, and visualizes the identified information in a compositional representation. SEALANT has been demonstrated to accurately identify inter-app vulnerabilities from hundreds of real-world Android apps and to effectively deliver the identified information to users. 
    more » « less
  4. Starting December 2020, all new and updated iOS apps must display app-based privacy labels. As the first large-scale implementation of privacy nutrition labels in a real-world setting, we aim to understand how these labels affect perceptions of app behavior. Replicating the methodology of Emani-Naeini et al. [IEEE S&P '21] in the space of IoT privacy nutrition labels, we conducted an online study in January 2023 on Prolific with n=1,505 participants to investigate the impact of privacy labels on users' risk perception and willingness to install apps. We found that many privacy label attributes raise participants' risk perception and lower their willingness to install an app. For example, when the app privacy label indicates that financial info will be collected and linked to their identities, participants were 15 times more likely to report increased privacy and security risks associated with the app. Likewise, when a label shows that sensitive info will be collected and used for cross-app/website tracking, participants were 304 times more likely to report a decrease in their willingness to install. However, participants had difficulty understanding privacy label jargon such as diagnostics, identifiers, track and linked. We provide recommendations for enhancing privacy label transparency, the importance of label clarity and accuracy, and how labels can impact consumer choice when suitable alternative apps are available. 
    more » « less
  5. Starting December 2020, all new and updated iOS apps must display app-based privacy labels. As the first large-scale implementation of privacy nutrition labels in a real-world setting, we aim to understand how these labels affect perceptions of app behavior. Replicating the methodology of Emani-Naeini et al. (IEEE S&P '21) in the space of IoT privacy nutrition labels, we conducted an online study in January 2023 on Prolific with n=1,505 participants to investigate the impact of privacy labels on users' risk perception and willingness to install apps. We found that many privacy label attributes raise participants' risk perception and lower their willingness to install an app. For example, when the app privacy label indicates that \emph{financial info} will be collected and linked to their identities, participants were 15 times more likely to report increased privacy and security risks associated with the app. Likewise, when a label shows that \emph{sensitive info} will be collected and used for cross-app/website tracking, participants were 304 times more likely to report a decrease in their willingness to install. However, participants had difficulty understanding privacy label jargon such as "diagnostics," "identifiers," "track" and "linked." We provide recommendations for enhancing privacy label transparency, the importance of label clarity and accuracy, and how labels can impact consumer choice when suitable alternative apps are available. 
    more » « less