skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Extremal Problem Arising in the Dynamics of Two‐Phase Materials That Directly Reveals Information about the Internal Geometry
In two-phase materials, each phase having a non-local response in time, it has been found that for some driving fields the response somehow untangles at specific times, and allows one to directly infer useful information about the geometry of the material, such as the volume fractions of the phases. Motivated by this, and to obtain an algorithm for designing appropriate driving fields, we find approximate, measure independent, linear relations between the values that Markov functions take at a given set of possibly complex points, not belonging to the interval [-1,1] where the measure is supported. The problem is reduced to simply one of polynomial approximation of a given function on the interval [-1,1] and, to simplify the analysis, Chebyshev approximation is used. This allows one to obtain explicit estimates of the error of the approximation, in terms of the number of points and the minimum distance of the points to the interval [-1,1]. Assuming this minimum distance is bounded below by a number greater than 1/2, the error converges exponentially to zero as the number of points is increased. Approximate linear relations are also obtained that incorporate a set of moments of the measure. In the context of the motivating problem, the analysis also yields bounds on the response at any particular time for any driving field, and allows one to estimate the response at a given frequency using an appropriately designed driving field that effectively is turned on only for a fixed interval of time. The approximation extends directly to Markov-type functions with a positive semidefinite operator valued measure, and this has applications to determining the shape of an inclusion in a body from boundary flux measurements at a specific time, when the time-dependent boundary potentials are suitably tailored.  more » « less
Award ID(s):
1814854 2008105
PAR ID:
10433184
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications on Pure and Applied Mathematics
ISSN:
0010-3640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution, provides ε-pure differential privacy (DP) guarantees and does not suffer from potentially unbounded privacy breach introduced by (ε,δ)-approximate DP. In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC), thus re-introducing the unappealing δ-approximation error into the privacy guarantees. To bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity (W∞) distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e., δ=0). We then leverage a Metropolis-Hastings algorithm to generate the sample and prove that the algorithm converges in W∞ distance. We show that by combining our new techniques with a localization step, we obtain the first nearly linear-time algorithm that achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses. 
    more » « less
  2. Abstract Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct the space, a Riemannian manifold with boundary? With a finite set of sources we can only hope to get an approximate reconstruction, and we indeed provide a discrete metric approximation to the manifold with explicit data-driven error bounds when the manifold is simple. This is the geometrization of a seismological inverse problem where we measure the arrival times on the surface of waves from an unknown number of unknown interior microseismic events at unknown times. The closeness of two metric spaces with a marked boundary is measured by a labeled Gromov–Hausdorff distance. If measurements are done for infinite time and spatially dense sources, our construction produces the true Riemannian manifold and the finite-time approximations converge to it in the metric sense 
    more » « less
  3. We study the sample complexity of learning revenue-optimal multi-item auctions. We obtain the first set of positive results that go beyond the standard but unrealistic setting of item-independence. In particular, we consider settings where bidders' valuations are drawn from correlated distributions that can be captured by Markov Random Fields or Bayesian Networks -- two of the most prominent graphical models. We establish parametrized sample complexity bounds for learning an up-to-ε optimal mechanism in both models, which scale polynomially in the size of the model, i.e. the number of items and bidders, and only exponential in the natural complexity measure of the model, namely either the largest in-degree (for Bayesian Networks) or the size of the largest hyper-edge (for Markov Random Fields). We obtain our learnability results through a novel and modular framework that involves first proving a robustness theorem. We show that, given only "approximate distributions" for bidder valuations, we can learn a mechanism whose revenue is nearly optimal simultaneously for all "true distributions" that are close to the ones we were given in Prokhorov distance. Thus, to learn a good mechanism, it suffices to learn approximate distributions. When item values are independent, learning in Prokhorov distance is immediate, hence our framework directly implies the main result of Gonczarowski and Weinberg. When item values are sampled from more general graphical models, we combine our robustness theorem with novel sample complexity results for learning Markov Random Fields or Bayesian Networks in Prokhorov distance, which may be of independent interest. Finally, in the single-item case, our robustness result can be strengthened to hold under an even weaker distribution distance, the Levy distance. 
    more » « less
  4. For any constant d and parameter epsilon > 0, we show the existence of (roughly) 1/epsilon^d orderings on the unit cube [0,1)^d, such that any two points p, q in [0,1)^d that are close together under the Euclidean metric are "close together" in one of these linear orderings in the following sense: the only points that could lie between p and q in the ordering are points with Euclidean distance at most epsilon | p - q | from p or q. These orderings are extensions of the Z-order, and they can be efficiently computed. Functionally, the orderings can be thought of as a replacement to quadtrees and related structures (like well-separated pair decompositions). We use such orderings to obtain surprisingly simple algorithms for a number of basic problems in low-dimensional computational geometry, including (i) dynamic approximate bichromatic closest pair, (ii) dynamic spanners, (iii) dynamic approximate minimum spanning trees, (iv) static and dynamic fault-tolerant spanners, and (v) approximate nearest neighbor search. 
    more » « less
  5. This paper addresses the problem of identification of error in variables switched linear models from experimental input/output data. This problem is known to be generically NP hard and thus computationally expensive to solve. To address this difficulty, several relaxations have been proposed in the past few years. While solvable in polynomial time these (convex) relaxations tend to scale poorly with the number of points and number/order of the subsystems, effectively limiting their applicability to scenarios with relatively small number of data points. To address this difficulty, in this paper we propose an efficient method that only requires performing (number of subsystems) singular value decompositions of matrices whose size is independent of the number of points. The underlying idea is to obtain a sum-of-squares polynomial approximation of the support of each subsystem one-at-a-time, and use these polynomials to segment the data into sets, each generated by a single subsystem. As shown in the paper, exploiting ideas from Christoffel's functions allows for finding these polynomial approximations simply by performing SVDs. The parameters of each subsystem can then be identified from the segmented data using existing error-in-variables (EIV) techniques. 
    more » « less