skip to main content


Title: Learning Attribute Distributions Through Random Walks
We investigate the statistical learning of nodal attribute distributions in homophily networks using random walks. Attributes can be discrete or continuous. A generalization of various existing canonical models, based on preferential attachment is studied, where new nodes form connections dependent on both their attribute values and popularity as measured by degree. We consider several canonical attribute agnostic sampling schemes such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec 2016) that incorporate both classical random walk and non-backtracking propensities and propose new variants which use attribute information in addition to topological information to explore the network. The performance of such algorithms is studied on both synthetic networks and real world systems, and its dependence on the degree of homophily, or absence thereof, is assessed.  more » « less
Award ID(s):
2113662
NSF-PAR ID:
10433605
Author(s) / Creator(s):
; ;
Editor(s):
Cherifi, H.; Mantegna, R.N.; Rocha, L.M.; Cherifi, C.; Micciche, S.
Date Published:
Journal Name:
Complex Networks and Their Applications XI
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the statistical learning of nodal attribute functionals in homophily networks using random walks. Attributes can be discrete or continuous. A generalization of various existing canonical models, based on preferential attachment is studied (model class $$\mathscr {P}$$ P ), where new nodes form connections dependent on both their attribute values and popularity as measured by degree. An associated model class $$\mathscr {U}$$ U is described, which is amenable to theoretical analysis and gives access to asymptotics of a host of functionals of interest. Settings where asymptotics for model class $$\mathscr {U}$$ U transfer over to model class $$\mathscr {P}$$ P through the phenomenon of resolvability are analyzed. For the statistical learning, we consider several canonical attribute agnostic sampling schemes such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec, 2016) that incorporate both classical random walk and non-backtracking propensities and propose new variants which use attribute information in addition to topological information to explore the network. Estimators for learning the attribute distribution, degree distribution for an attribute type and homophily measures are proposed. The performance of such statistical learning framework is studied on both synthetic networks (model class $$\mathscr {P}$$ P ) and real world systems, and its dependence on the network topology, degree of homophily or absence thereof, (un)balanced attributes, is assessed. 
    more » « less
  2. Abstract Understanding actor collaboration networks and their evolution is essential to promoting collective action in resilience planning and management of interdependent infrastructure systems. Local interactions and choice homophily are two important network evolution mechanisms. Network motifs encode the information of network formation, configuration, and the local structure. Homophily effects, on the other hand, capture whether the network configurations have significant correlations with node properties. The objective of this paper is to explore the extent to which local interactions and homophily effects influence actor collaboration in resilience planning and management of interdependent infrastructure systems. We mapped bipartite actor collaboration network based on a post-Hurricane Harvey stakeholder survey that revealed actor collaborations for hazard mitigation. We examined seven bipartite network motifs for the mapped collaboration network and compared the mapped network to simulated random models with same degree distributions. Then we examined whether the network configurations had significant statistics for node properties using exponential random graph models. The results provide insights about the two mechanisms—local interactions and homophily effect—influencing the formation of actor collaboration in resilience planning and management of interdependent urban systems. The findings have implications for improving network cohesion and actor collaborations from diverse urban sectors. 
    more » « less
  3. Abstract

    Preferential attachment, homophily, and their consequences such as scale-free (i.e. power-law) degree distributions, the glass ceiling effect (the unseen, yet unbreakable barrier that keeps minorities and women from rising to the upper rungs of the corporate ladder, regardless of their qualifications or achievements) and perception bias are well-studied in undirected networks. However, such consequences and the factors that lead to their emergence in directed networks (e.g. author–citation graphs, Twitter) are yet to be coherently explained in an intuitive, theoretically tractable manner using a single dynamical model. To this end, we present a theoretical and numerical analysis of the novel Directed Mixed Preferential Attachment model in order to explain the emergence of scale-free degree distributions and the glass ceiling effect in directed networks with two groups (minority and majority). Specifically, we first derive closed-form expressions for the power-law exponents of the in-degree and out-degree distributions of each of the two groups and then compare the derived exponents with each other to obtain useful insights. These insights include answers to questions such as: when does the minority group have an out-degree (or in-degree) distribution with a heavier tail compared to the majority group? what factors cause the tail of the out-degree distribution of a group to be heavier than the tail of its own in-degree distribution? what effect does frequent addition of edges between existing nodes have on the in-degree and out-degree distributions of the majority and minority groups? Answers to these questions shed light on the interplay between structure (i.e. the in-degree and out-degree distributions of the two groups) and dynamics (characterized collectively by the homophily, preferential attachment, group sizes and growth dynamics) of various real-world directed networks. We also provide a novel definition of the glass ceiling faced by a group via the number of individuals with large out-degree (i.e. those with many followers) normalized by the number of individuals with large in-degree (i.e. those who follow many others) and then use it to characterize the conditions that cause the glass ceiling effect to emerge in a directed network. Our analytical results are supported by detailed numerical experiments. The DMPA model and its theoretical and numerical analysis provided in this article are useful for analysing various phenomena on directed networks in fields such as network science and computational social science.

     
    more » « less
  4. In addition to diffusive signals, cells in tissue also communicate via long, thin cellular protrusions, such as airinemes in zebrafish. Before establishing communication, cellular protrusions must find their target cell. Here, we demonstrate that the shapes of airinemes in zebrafish are consistent with a finite persistent random walk model. The probability of contacting the target cell is maximized for a balance between ballistic search (straight) and diffusive search (highly curved, random). We find that the curvature of airinemes in zebrafish, extracted from live-cell microscopy, is approximately the same value as the optimum in the simple persistent random walk model. We also explore the ability of the target cell to infer direction of the airineme’s source, finding that there is a theoretical trade-off between search optimality and directional information. This provides a framework to characterize the shape, and performance objectives, of non-canonical cellular protrusions in general. 
    more » « less
  5. Abstract Motivation

    Accurately representing biological networks in a low-dimensional space, also known as network embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an unsupervised method based on biased random walks. However, while many networks, including functional gene interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge weights during the biased random walk generation process, thus under-using all the information in the network.

    Results

    Here, we present node2vec+, a natural extension of node2vec that accounts for edge weights when calculating walk biases and reduces to node2vec in the cases of unweighted graphs or unbiased walks. Using two synthetic datasets, we empirically show that node2vec+ is more robust to additive noise than node2vec in weighted graphs. Then, using genome-scale functional gene networks to solve a wide range of gene function and disease prediction tasks, we demonstrate the superior performance of node2vec+ over node2vec in the case of weighted graphs. Notably, due to the limited amount of training data in the gene classification tasks, graph neural networks such as GCN and GraphSAGE are outperformed by both node2vec and node2vec+.

    Availability and implementation

    The data and code are available on GitHub at https://github.com/krishnanlab/node2vecplus_benchmarks. All additional data underlying this article are available on Zenodo at https://doi.org/10.5281/zenodo.7007164.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less