skip to main content


Title: Determination of the asymptotic limits of adaptive photon counting measurements for coherent-state optical phase estimation
Abstract Physical realizations of the canonical phase measurement for the optical phase are unknown. Single-shot phase estimation, which aims to determine the phase of an optical field in a single shot, is critical in quantum information processing and metrology. Here we present a family of strategies for single-shot phase estimation of coherent states based on adaptive non-Gaussian, photon counting, measurements with coherent displacements that maximize information gain as the measurement progresses, which have higher sensitivities over the best known adaptive Gaussian strategies. To gain understanding about their fundamental characteristics and demonstrate their superior performance, we develop a comprehensive statistical analysis based on Bayesian optimal design of experiments, which provides a natural description of these non-Gaussian strategies. This mathematical framework, together with numerical analysis and Monte Carlo methods, allows us to determine the asymptotic limits in sensitivity of strategies based on photon counting designed to maximize information gain, which up to now had been a challenging problem. Moreover, we show that these non-Gaussian phase estimation strategies have the same functional form as the canonical phase measurement in the asymptotic limit differing only by a scaling factor, thus providing the highest sensitivity among physically-realizable measurements for single-shot phase estimation of coherent states known to date. This work shines light into the potential of optimized non-Gaussian measurements based on photon counting for optical quantum metrology and phase estimation.  more » « less
Award ID(s):
2210447
NSF-PAR ID:
10434023
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
npj Quantum Information
Volume:
8
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Estimation of the properties of a physical system with minimal uncertainty is a central task in quantum metrology. Optical phase estimation is at the center of many metrological tasks where the value of a physical parameter is mapped to the phase of an electromagnetic field and single-shot measurements of this phase are necessary. While there are measurements able to estimate the phase of light in a single shot with small uncertainties, demonstrations of near-optimal single-shot measurements for an unknown phase of a coherent state remain elusive. Here, we propose and demonstrate strategies for single-shot measurements for ab initio phase estimation of coherent states that surpass the sensitivity limit of heterodyne measurement and approach the Cramer-Rao lower bound for coherent states. These single-shot estimation strategies are based on real-time optimization of coherent displacement operations, single photon counting with photon number resolution, and fast feedback. We show that our demonstration of these optimized estimation strategies surpasses the heterodyne limit for a wide range of optical powers without correcting for detection efficiency with a moderate number of adaptive measurement steps. This is, to our knowledge, the most sensitive single-shot measurement of an unknown phase encoded in optical coherent states. 
    more » « less
  2. Abstract

    The achievable rate of information transfer in optical communications is determined by the physical properties of the communication channel, such as the intrinsic channel noise. Bosonic phase noise channels, a class of non-Gaussian channels, have emerged as a relevant noise model in quantum information and optical communication. However, while the fundamental limits for communication over Gaussian channels have been extensively studied, the properties of communication over Bosonic phase noise channels are not well understood. Here we propose and demonstrate experimentally the concept of optimized communication strategies for communication over phase noise channels to enhance information transfer beyond what is possible with conventional methods of modulation and detection. Two key ingredients are generalized constellations of coherent states that interpolate between standard on-off keying and binary phase-shift keying formats, and non-Gaussian measurements based on photon number resolving detection of the coherently displaced signal. For a given power constraint and channel noise strength, these novel strategies rely on joint optimization of the input alphabet and the measurement to provide enhanced communication capability over a non-Gaussian channel characterized in terms of the error rate as well as mutual information.

     
    more » « less
  3. Hemmer, Philip R. ; Migdall, Alan L. (Ed.)
    Recent proposals suggest that distributed single photons serving as a ‘non-local oscillator’ can outperform coherent states as a phase reference for long-baseline interferometric imaging of weak sources [1,2]. Such nonlocal quantum states distributed between telescopes can, in-principle, surpass the limitations of conventional interferometric-based astronomical imaging approaches for very-long baselines such as: signal-to-noise, shot noise, signal loss, and faintness of the imaged objects. Here we demonstrate in a table-top experiment, interference between a nonlocal oscillator generated by equal-path splitting of an idler photon from a pulsed, separable, parametric down conversion process and a spectrally single-mode, quasi-thermal source. We compare the single-photon nonlocal oscillator to a more conventional local oscillator with uncertain photon number. Both methods enabled reconstruction of the source’s Gaussian spatial distribution by measurement of the interference visibility as a function of baseline separation and then applying the van Cittert-Zernike theorem [3,4]. In both cases, good qualitative agreement was found with the reconstructed source width and the known source width as measured using a camera. We also report an increase of signal-to-noise per ‘faux’ stellar photon detected when heralding the idler photon. 1593 heralded (non-local oscillator) detection events led to a maximum visibility of ~17% compared to the 10412 unheralded (classical local oscillator) detection events, which gave rise to a maximum visibility of ~10% – the first instance of quantum-enhanced sensing in this context. 
    more » « less
  4. The classic self-referenced frequency comb acts as an unrivaled ruler for precision optical metrology in both time and frequency. Two decades after its invention, the frequency comb is now used in numerous active sensing applications. Many of these applications, however, are limited by the tradeoffs inherent in the rigidity of the comb output and operate far from quantum-limited sensitivity. Here we demonstrate an agile programmable frequency comb where the pulse time and phase are digitally controlled with +/- 2 attosecond accuracy. This agility enables quantum-limited sensitivity in sensing applications since the programmable comb can be configured to coherently track weak returning pulse trains at the shot-noise limit. To highlight its capabilities, we use this programmable comb in a ranging system, reducing the detection threshold by ~5,000-fold to enable nearly quantum-limited ranging at mean pulse photon number of 1/77 while retaining the full accuracy and precision of a rigid frequency comb. Beyond ranging and imaging, applications in time/frequency metrology, comb-based spectroscopy, pump-probe experiments, and compressive sensing should benefit from coherent control of the comb-pulse time and phase. 
    more » « less
  5. Abstract

    Quantum state discrimination is a central problem in quantum measurement theory, with applications spanning from quantum communication to computation. Typical measurement paradigms for state discrimination involve a minimum probability of error or unambiguous discrimination with a minimum probability of inconclusive results. Alternatively, an optimal inconclusive measurement, a non-projective measurement, achieves minimal error for a given inconclusive probability. This more general measurement encompasses the standard measurement paradigms for state discrimination and provides a much more powerful tool for quantum information and communication. Here, we experimentally demonstrate the optimal inconclusive measurement for the discrimination of binary coherent states using linear optics and single-photon detection. Our demonstration uses coherent displacement operations based on interference, single-photon detection, and fast feedback to prepare the optimal feedback policy for the optimal non-projective quantum measurement with high fidelity. This generalized measurement allows us to transition among standard measurement paradigms in an optimal way from minimum error to unambiguous measurements for binary coherent states. As a particular case, we use this general measurement to implement the optimal minimum error measurement for phase-coherent states, which is the optimal modulation for communications under the average power constraint. Moreover, we propose a hybrid measurement that leverages the binary optimal inconclusive measurement in conjunction with sequential, unambiguous state elimination to realize higher dimensional inconclusive measurements of coherent states.

     
    more » « less