skip to main content


Title: Non-equilibrium plasma-assisted dry reforming of methane over shape-controlled CeO 2 supported ruthenium catalysts
In this report, CeO 2 and SiO 2 supported 1 wt% Ru catalysts were synthesized and studied for dry reforming of methane (DRM) by introducing non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) fixed bed reactor. From quadrupole mass spectrometer (QMS) data, it is found that introducing non-thermal plasma in thermo-catalytic DRM promotes higher CH 4 and CO 2 conversion and syngas (CO + H 2 ) yield than those under thermal catalysis only conditions. According to the H 2 -TPR, CO 2 -TPD, and CO-TPD profiles, reducible CeO 2 supported Ru catalysts presented better activity compared to their irreducible SiO 2 supported Ru counterparts. For instance, the molar concentrations of CO and H 2 were 16% and 9%, respectively, for plasma-assisted thermo-catalytic DRM at 350 °C, while no apparent conversion was observed at the same temperature for thermo-catalytic DRM. Highly energetic electrons, ions, and radicals under non-equilibrium and non-thermal plasma conditions are considered to contribute to the activation of strong C–H bonds in CH 4 and C–O bonds in CO 2 , which significantly improves the CH 4 /CO 2 conversion during DRM reaction at low temperatures. At 450 °C, the 1 wt% Ru/CeO 2 nanorods sample showed the highest catalytic activity with 51% CH 4 and 37% CO 2 conversion compared to 1 wt% Ru/CeO 2 nanocubes (40% CH 4 and 30% CO 2 ). These results clearly indicate that the support shape and reducibility affect the plasma-assisted DRM reaction. This enhanced DRM activity is ascribed to the surface chemistry and defect structures of the CeO 2 nanorods support that can provide active surface facets, higher amounts of mobile oxygen and oxygen vacancy, and other surface defects.  more » « less
Award ID(s):
1856729
PAR ID:
10434169
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
11
Issue:
20
ISSN:
2050-7488
Page Range / eLocation ID:
10993 to 11009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a Pt catalyst supported on an equimolar Al 2 O 3 –CeO 2 binary oxide (Pt–Al–Ce) was prepared and applied in photo-thermo-chemical dry reforming of methane (DRM) driven by concentrated solar irradiation. It was found that the Pt–Al–Ce catalyst showed good stability in DRM reactions and significant enhancements in H 2 and CO production rates compared with Pt/CeO 2 (Pt–Ce) and Pt/Al 2 O 3 (Pt–Al) catalysts. At a reaction temperature of 700 °C under 30-sun equivalent solar irradiation, the Pt–Al–Ce catalyst exhibits a stable DRM catalytic performance at a H 2 production rate of 657 mmol g −1 h −1 and a CO production rate of 666 mmol g −1 h −1 , with the H 2 /CO ratio almost equal to unity. These production rates and the H 2 /CO ratio were significantly higher than those obtained in the dark at the same temperature. The light irradiation was found to induce photocatalytic activities on Pt–Al–Ce and reduce the reaction activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy ( in situ DRIFTS) was applied to identify the active intermediates in the photo-thermo-chemical DRM process, which were bidentate/monodentate carbonate, absorbed CO on Pt, and formate. The benefits of the binary Al 2 O 3 –CeO 2 substrate could be ascribed to Al 2 O 3 promoting methane dissociation while CeO 2 stabilized and eliminated possible coke formation, leading to high catalytic DRM activity and stability. 
    more » « less
  2. Abstract

    Gold (Au)- and ceria (CeO2)-based catalysts are amongst the most active catalysts for the gas phase CO oxidation reaction. Nevertheless, nanosized Au and CeO2catalysts may encounter heat-induced sintering in thermochemical catalytic reactions. Herein, we report on the rational one-pot synthesis of ceria-reduced graphene oxide (CeO2-RGO) using a facile ethylenediamine (EDA)-assisted solvothermal method. Standalone RGO and free-standing CeO2were also prepared using the same EDA-assisted method for comparison. We then incorporated Au into the prepared samples by colloidal reduction and evaluated the catalytic activity of the different catalysts for CO oxidation. The RGO-supported CeO2surpassed the free-standing CeO2, exhibiting a 100% CO conversion at 285oC compared to 340oC in the case of CeO2. Interestingly, the RGO-supported Au/CeO2catalysts outperformed the Au/CeO2catalysts and achieved a 100% CO conversion at 76oC compared to 113oC in the case of Au/CeO2. Additionally, the Au/CeO2-RGO catalyst demonstrated remarkable room-temperature activity with simultaneous 72% CO conversion. This outstanding performance was attributed to the unique dispersion and size characteristics of the RGO-supported CeO2and Au catalysts in the ternary Au/CeO2-RGO nanocomposite, as revealed by TEM and XPS, among other techniques.

     
    more » « less
  3. Abstract

    Co2C, an emerging catalyst for the conversion of syngas to oxygenates, shows support‐sensitive behavior that has not yet been fully explained. Here, we characterize Co catalysts modified with ZnO atomic layer deposition on SiO2, carbon, CeO2, and Al2O3supports. We find that under syngas conditions, ZnO‐promoted Co transforms into Co2C on SiO2, carbon, and CeO2, but not on Al2O3. Moreover, the support affects the extent of carburization: while the SiO2‐supported catalyst carburizes completely, carbon‐ and CeO2‐supported catalysts show incomplete conversion of Co to Co2C. These three catalysts also exhibit different oxygenate selectivities. In contrast, the modified Al2O3‐supported catalyst retains the Fischer‐Tropsch catalytic properties of metallic Co. By depositing increasing amounts of Al2O3by ALD on the SiO2support, decreasing Co2C formation and oxygenate selectivity occurs.In‐situXANES reveals that Al2O3prevents Co2C formation by enabling the ZnO to restructure into ZnAl2O4during reduction. Thus, in addition to modifying the active catalyst phase, the promoter can also strongly interact with the support, significantly impacting catalyst performance.

     
    more » « less
  4. Abstract Selective conversion of methane (CH 4 ) into value-added chemicals represents a grand challenge for the efficient utilization of rising hydrocarbon sources. We report here dimeric copper centers supported on graphitic carbon nitride (denoted as Cu 2 @C 3 N 4 ) as advanced catalysts for CH 4 partial oxidation. The copper-dimer catalysts demonstrate high selectivity for partial oxidation of methane under both thermo- and photocatalytic reaction conditions, with hydrogen peroxide (H 2 O 2 ) and oxygen (O 2 ) being used as the oxidizer, respectively. In particular, the photocatalytic oxidation of CH 4 with O 2 achieves >10% conversion, and >98% selectivity toward methyl oxygenates and a mass-specific activity of 1399.3 mmol g Cu −1 h −1 . Mechanistic studies reveal that the high reactivity of Cu 2 @C 3 N 4 can be ascribed to symphonic mechanisms among the bridging oxygen, the two copper sites and the semiconducting C 3 N 4 substrate, which do not only facilitate the heterolytic scission of C-H bond, but also promotes H 2 O 2 and O 2 activation in thermo- and photocatalysis, respectively. 
    more » « less
  5. Abstract

    The complex structure of the catalytic active phase, and surface‐gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2WO4/SiO2catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2‐TPR, TAP and steady‐state kinetics) experiments, that the long speculated crystalline Na2WO4active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na‐WOxsites. Kinetic analysis via temporal analysis of products (TAP) and steady‐state OCM reaction studies demonstrate that (i) surface Na‐WOxsites are responsible for selectively activating CH4to C2Hxand over‐oxidizing CHyto CO and (ii) molten Na2WO4phase is mainly responsible for over‐oxidation of CH4to CO2and also assists in oxidative dehydrogenation of C2H6to C2H4. These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2WO4/SiO2catalysts.

     
    more » « less