skip to main content


This content will become publicly available on May 23, 2024

Title: Non-equilibrium plasma-assisted dry reforming of methane over shape-controlled CeO 2 supported ruthenium catalysts
In this report, CeO 2 and SiO 2 supported 1 wt% Ru catalysts were synthesized and studied for dry reforming of methane (DRM) by introducing non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) fixed bed reactor. From quadrupole mass spectrometer (QMS) data, it is found that introducing non-thermal plasma in thermo-catalytic DRM promotes higher CH 4 and CO 2 conversion and syngas (CO + H 2 ) yield than those under thermal catalysis only conditions. According to the H 2 -TPR, CO 2 -TPD, and CO-TPD profiles, reducible CeO 2 supported Ru catalysts presented better activity compared to their irreducible SiO 2 supported Ru counterparts. For instance, the molar concentrations of CO and H 2 were 16% and 9%, respectively, for plasma-assisted thermo-catalytic DRM at 350 °C, while no apparent conversion was observed at the same temperature for thermo-catalytic DRM. Highly energetic electrons, ions, and radicals under non-equilibrium and non-thermal plasma conditions are considered to contribute to the activation of strong C–H bonds in CH 4 and C–O bonds in CO 2 , which significantly improves the CH 4 /CO 2 conversion during DRM reaction at low temperatures. At 450 °C, the 1 wt% Ru/CeO 2 nanorods sample showed the highest catalytic activity with 51% CH 4 and 37% CO 2 conversion compared to 1 wt% Ru/CeO 2 nanocubes (40% CH 4 and 30% CO 2 ). These results clearly indicate that the support shape and reducibility affect the plasma-assisted DRM reaction. This enhanced DRM activity is ascribed to the surface chemistry and defect structures of the CeO 2 nanorods support that can provide active surface facets, higher amounts of mobile oxygen and oxygen vacancy, and other surface defects.  more » « less
Award ID(s):
1856729
NSF-PAR ID:
10434169
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
11
Issue:
20
ISSN:
2050-7488
Page Range / eLocation ID:
10993 to 11009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a Pt catalyst supported on an equimolar Al 2 O 3 –CeO 2 binary oxide (Pt–Al–Ce) was prepared and applied in photo-thermo-chemical dry reforming of methane (DRM) driven by concentrated solar irradiation. It was found that the Pt–Al–Ce catalyst showed good stability in DRM reactions and significant enhancements in H 2 and CO production rates compared with Pt/CeO 2 (Pt–Ce) and Pt/Al 2 O 3 (Pt–Al) catalysts. At a reaction temperature of 700 °C under 30-sun equivalent solar irradiation, the Pt–Al–Ce catalyst exhibits a stable DRM catalytic performance at a H 2 production rate of 657 mmol g −1 h −1 and a CO production rate of 666 mmol g −1 h −1 , with the H 2 /CO ratio almost equal to unity. These production rates and the H 2 /CO ratio were significantly higher than those obtained in the dark at the same temperature. The light irradiation was found to induce photocatalytic activities on Pt–Al–Ce and reduce the reaction activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy ( in situ DRIFTS) was applied to identify the active intermediates in the photo-thermo-chemical DRM process, which were bidentate/monodentate carbonate, absorbed CO on Pt, and formate. The benefits of the binary Al 2 O 3 –CeO 2 substrate could be ascribed to Al 2 O 3 promoting methane dissociation while CeO 2 stabilized and eliminated possible coke formation, leading to high catalytic DRM activity and stability. 
    more » « less
  2. Abstract

    Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L‐cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L‐Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L‐Cys)mnanoclusters supported on the reducible metal oxides CeO2, TiO2and Fe3O4exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand‐protected clusters Pdn(L‐Cys)mis observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand‐protected Pd nanoclusters where the L‐cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub‐2‐nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L‐cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand‐protected clusters. However, for the TiO2and Fe3O4supports, complete removal of the ligands from the Pdn(L‐Cys)mclusters leads to a slight decrease in activity where the T100%CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2and Fe3O4supports appears to aid in efficient encapsulation of the bare Pdnnanoclusters within the mesoporous pores of the support.

     
    more » « less
  3. Abstract

    Gold (Au)- and ceria (CeO2)-based catalysts are amongst the most active catalysts for the gas phase CO oxidation reaction. Nevertheless, nanosized Au and CeO2catalysts may encounter heat-induced sintering in thermochemical catalytic reactions. Herein, we report on the rational one-pot synthesis of ceria-reduced graphene oxide (CeO2-RGO) using a facile ethylenediamine (EDA)-assisted solvothermal method. Standalone RGO and free-standing CeO2were also prepared using the same EDA-assisted method for comparison. We then incorporated Au into the prepared samples by colloidal reduction and evaluated the catalytic activity of the different catalysts for CO oxidation. The RGO-supported CeO2surpassed the free-standing CeO2, exhibiting a 100% CO conversion at 285oC compared to 340oC in the case of CeO2. Interestingly, the RGO-supported Au/CeO2catalysts outperformed the Au/CeO2catalysts and achieved a 100% CO conversion at 76oC compared to 113oC in the case of Au/CeO2. Additionally, the Au/CeO2-RGO catalyst demonstrated remarkable room-temperature activity with simultaneous 72% CO conversion. This outstanding performance was attributed to the unique dispersion and size characteristics of the RGO-supported CeO2and Au catalysts in the ternary Au/CeO2-RGO nanocomposite, as revealed by TEM and XPS, among other techniques.

     
    more » « less
  4. Abstract

    Co2C, an emerging catalyst for the conversion of syngas to oxygenates, shows support‐sensitive behavior that has not yet been fully explained. Here, we characterize Co catalysts modified with ZnO atomic layer deposition on SiO2, carbon, CeO2, and Al2O3supports. We find that under syngas conditions, ZnO‐promoted Co transforms into Co2C on SiO2, carbon, and CeO2, but not on Al2O3. Moreover, the support affects the extent of carburization: while the SiO2‐supported catalyst carburizes completely, carbon‐ and CeO2‐supported catalysts show incomplete conversion of Co to Co2C. These three catalysts also exhibit different oxygenate selectivities. In contrast, the modified Al2O3‐supported catalyst retains the Fischer‐Tropsch catalytic properties of metallic Co. By depositing increasing amounts of Al2O3by ALD on the SiO2support, decreasing Co2C formation and oxygenate selectivity occurs.In‐situXANES reveals that Al2O3prevents Co2C formation by enabling the ZnO to restructure into ZnAl2O4during reduction. Thus, in addition to modifying the active catalyst phase, the promoter can also strongly interact with the support, significantly impacting catalyst performance.

     
    more » « less
  5. null (Ed.)
    Palladium catalyzed cross-coupling reactions represent a significant advancement in contemporary organic synthesis as these reactions are of strategic importance in the area of pharmaceutical drug discovery and development. Supported palladium-based catalysts are highly sought-after in carbon–carbon bond forming catalytic processes to ensure catalyst recovery and reuse while preventing product contamination. This paper reports the development of heterogeneous Pd-based bimetallic catalysts supported on fumed silica that have high activity and selectivity matching those of homogeneous catalysts, eliminating the catalyst's leaching and sintering and allowing efficient recycling of the catalysts. Palladium and base metal (Cu, Ni or Co) contents of less than 1.0 wt% loading are deposited on a mesoporous fumed silica support (surface area SA BET = 350 m 2 g −1 ) using strong electrostatic adsorption (SEA) yielding homogeneously alloyed nanoparticles with an average size of 1.3 nm. All bimetallic catalysts were found to be highly active toward Suzuki cross-coupling (SCC) reactions with superior activity and stability for the CuPd/SiO 2 catalyst. A low CuPd/SiO 2 loading (Pd: 0.3 mol%) completes the conversion of bromobenzene and phenylboronic acid to biphenyl in 30 minutes under ambient conditions in water/ethanol solvent. In contrast, monometallic Pd/SiO 2 (Pd: 0.3 mol%) completes the same reaction in three hours under the same conditions. The combination of Pd with the base metals helps in retaining the Pd 0 status by charge donation from the base metals to Pd, thus lowering the activation energy of the aryl halide oxidative addition step. Along with its exceptional activity, CuPd/SiO 2 exhibits excellent recycling performance with a turnover frequency (TOF) of 280 000 h −1 under microwave reaction conditions at 60 °C. Our study demonstrates that SEA is an excellent synthetic strategy for depositing ultra-small Pd-based bimetallic nanoparticles on porous silica for SCC. This avenue not only provides highly active and sintering-resistant catalysts but also significantly lowers Pd contents in the catalysts without compromising catalytic activity, making the catalysts very practical for large-scale applications. 
    more » « less