skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: The covalent nucleotide modifications within plant mRNAs: What we know, how we find them, and what should be done in the future
Abstract Although covalent nucleotide modifications were first identified on the bases of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), a number of these epitranscriptome marks have also been found to occur on the bases of messenger RNAs (mRNAs). These covalent mRNA features have been demonstrated to have various and significant effects on the processing (e.g. splicing, polyadenylation, etc.) and functionality (e.g. translation, transport, etc.) of these protein-encoding molecules. Here, we focus our attention on the current understanding of the collection of covalent nucleotide modifications known to occur on mRNAs in plants, how they are detected and studied, and the most outstanding future questions of each of these important epitranscriptomic regulatory signals.  more » « less
Award ID(s):
1849708
PAR ID:
10434654
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Plant Cell
Volume:
35
Issue:
6
ISSN:
1040-4651
Page Range / eLocation ID:
1801 to 1816
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Ribonucleotides within the various RNA molecules in eukaryotes are marked with more than 160 distinct covalent chemical modifications. These modifications include those that occur internally in messenger RNA (mRNA) molecules such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), as well as those that occur at the ends of the modified RNAs like the non-canonical 5′ end nicotinamide adenine dinucleotide (NAD+) cap modification of specific mRNAs. Recent findings have revealed that covalent RNA modifications can impact the secondary structure, translatability, functionality, stability and degradation of the RNA molecules in which they are included. Many of these covalent RNA additions have also been found to be dynamically added and removed through writer and eraser complexes, respectively, providing a new layer of epitranscriptome-mediated post-transcriptional regulation that regulates RNA quality and quantity in eukaryotic transcriptomes. Thus, it is not surprising that the regulation of RNA fate mediated by these epitranscriptomic marks has been demonstrated to have widespread effects on plant development and the responses of these organisms to abiotic and biotic stresses. In this review, we highlight recent progress focused on the study of the dynamic nature of these epitranscriptome marks and their roles in post-transcriptional regulation during plant development and response to environmental cues, with an emphasis on the mRNA modifications of non-canonical 5′ end NAD+ capping, m6A and several other internal RNA modifications. 
    more » « less
  2. Since the discovery of the first ribonucleic acid (RNA) modifications in transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), scientists have been on a quest to decipher the identities and functions of RNA modifications in biological systems. The last decade has seen monumental growth in the number of studies that have characterized and assessed the functionalities of RNA modifications in the field of plant biology. Owing to these studies, we now categorize RNA modifications based on their chemical nature and the RNA on which they are found, as well as the array of proteins that are involved in the processes that add, read, and remove them from an RNA molecule. Beyond their identity, another key piece of the puzzle is the functional significance of the various types of RNA modifications. Here, we shed light on recent studies that help establish our current understanding of the diversity of RNA modifications found in plant transcriptomes and the functions they play at both the molecular (e.g., RNA stability, translation, and transport) and organismal (e.g., stress response and development) levels. Finally, we consider the key research questions related to plant gene expression and biology in general and highlight developments in various technologies that are driving our insights forward in this research area. 
    more » « less
  3. SUMMARY The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 3′ CCA tail, introduce post‐transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High‐throughput sequencing techniques have recently been developed to provide a comprehensive view of aminoacylation state in a tRNA‐specific fashion. However, these methods have never been applied to plants. Here, we treatedArabidopsis thalianaRNA samples with periodate and then performed tRNA‐seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA‐like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously published human cell line data showed a similar pattern. Base modifications result in nucleotide misincorporations and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA‐like sequences (t‐elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post‐transcriptionally modified bases and CCA‐tail addition. However, these t‐elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA‐interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery. 
    more » « less
  4. Chemical modifications to protein encoding messenger RNAs (mRNAs) influence their localization, translation, and stability within cells. Over 15 different types of mRNA modifications have been observed by sequencing and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) approaches. While LC-MS/MS is arguably the most essential tool available for studying analogous protein post-translational modifications, the high-throughput discovery and quantitative characterization of mRNA modifications by LC-MS/MS has been hampered by the difficulty of obtaining sufficient quantities of pure mRNA and limited sensitivities for modified nucleosides. We have overcome these challenges by improving the mRNA purification and LC-MS/MS pipelines. The methodologies we developed result in no detectable non-coding RNA modifications signals in our purified mRNA samples, quantify 50 ribonucleosides in a single analysis, and provide the lowest limit of detection reported for ribonucleoside modification LC-MS/MS analyses. These advancements enabled the detection and quantification of 13 S. cerevisiae mRNA ribonucleoside modifications and reveal the presence of four new S. cerevisiae mRNA modifications at low to moderate levels (1-methyguanosine, N 2-methylguanosine, N 2, N 2-dimethylguanosine, and 5-methyluridine). We identified four enzymes that incorporate these modifications into S. cerevisiae mRNAs (Trm10, Trm11, Trm1, and Trm2, respectively), though our results suggest that guanosine and uridine nucleobases are also non-enzymatically methylated at low levels. Regardless of whether they are incorporated in a programmed manner or as the result of RNA damage, we reasoned that the ribosome will encounter the modifications that we detect in cells. To evaluate this possibility, we used a reconstituted translation system to investigate the consequences of modifications on translation elongation. Our findings demonstrate that the introduction of 1-methyguanosine, N 2-methylguanosine and 5-methyluridine into mRNA codons impedes amino acid addition in a position dependent manner. This work expands the repertoire of nucleoside modifications that the ribosome must decode in S. cerevisiae. Additionally, it highlights the challenge of predicting the effect of discrete modified mRNA sites on translation de novo because individual modifications influence translation differently depending on mRNA sequence context. 
    more » « less
  5. Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for posttranslationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, while the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins. 
    more » « less