skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A height-dependent climatological model of the equatorial ionospheric zonal plasma drifts (EZDrifts): Description and application to an analysis of the longitudinal variations of the zonal drifts
We introduce the implementation of a global climatological model of the equatorial ionospheric F-region zonal drifts (EZDrifts) that is made available to the public. The model uses the analytic description of the zonal plasma drifts presented by Haerendel et al. (1992) [ J Geophys Res 97(A2) : 1209–1223] and is driven by climatological models of the ionosphere and thermosphere under a realistic geomagnetic field configuration. EZDrifts is an expansion of the model of the zonal drifts first presented by Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] which was only valid for the Jicamarca longitude sector and two specific solar flux conditions. EZDrifts now uses vertical equatorial plasma drifts from Scherliess & Fejer (1999) [ J Geophys Res 104(A4) : 6829–6842] model which allows it to provide zonal drifts for any day of the year, longitude, and solar flux condition. We show that the model can reproduce the main results of the Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] model for the Peruvian sector. We also illustrate an application of EZDrifts by presenting and discussing longitudinal variabilities produced by the model. We show that the model predicts longitudinal variations in the reversal times of the drifts that are in good agreement with observations made by C/NOFS. EZDrifts also predicts longitudinal variations in the magnitude of the drifts that can be identified in the June solstice observations made by C/NOFS. We also point out data-model differences observed during Equinox and December solstice. Finally, we explain that the longitudinal variations in the zonal plasma drifts are caused by longitudinal variations in the latitude of the magnetic equator and, consequently, in the wind dynamo contributing to the resulting drifts. EZDrifts is distributed to the community through a public repository and can be used in applications requiring an estimate of the overall behavior of the equatorial zonal drifts.  more » « less
Award ID(s):
1916055
PAR ID:
10435278
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Space Weather and Space Climate
Volume:
13
ISSN:
2115-7251
Page Range / eLocation ID:
8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The effect of eastward zonal wind speed (EZWS) on vertical drift velocity (E × Bdrift) that mainly controls the equatorial ionospheric irregularities has been explained theoretically and through numerical models. However, its effect on the seasonal and longitudinal variations ofE × Band the accompanying irregularities has not yet been investigated experimentally due to lack ofF‐layer wind speed measurements. Observations of EZWS from GOCE and ion density andE × Bfrom C/NOFS satellites for years 2011 and 2012 during quite times are used in this study. Monthly and longitudinal variations of the irregularity occurrence,E × B, and EZWS show similar patterns. We find that at most 50.85% of longitudinal variations ofE × Bcan be explained by the longitudinal variability of EZWS only. When the EZWS exceeds 150 m/s, the longitudinal variation of EZWS, geomagnetic field strength, and Pedersen conductivity explain 56.40–69.20% of the longitudinal variation ofE × B. In Atlantic, Africa, and Indian sectors, from 42.63% to 79.80% of the monthly variations of theE × Bcan be explained by the monthly variations of EZWS only. It is found also that EZWS andE × Bmay be linearly correlated during fall equinox and December solstice. The peak occurrence of irregularity in the Atlantic sector during November and December is due to the combined effect of large wind speed, solar terminator‐geomagnetic field alignment, and small geomagnetic field strength and Pedersen conductivity. Moreover, during June solstices, small EZWS corresponds to vertically downwardE × B, which suggests that other factors dominate theE × Bdrift rather than the EZWS during these periods. 
    more » « less
  2. Abstract We introduce a new numerical model developed to assist with Data Interpretation and Numerical Analysis of ionospheric Missions and Observations (DINAMO). DINAMO derives the ionospheric electrostatic potential at low- and mid-latitudes from a two-dimensional dynamo equation and user-specified inputs for the state of the ionosphere and thermosphere (I–T) system. The potential is used to specify the electric fields and associated F -region E × B plasma drifts. Most of the model was written in Python to facilitate the setup of numerical experiments and to engage students in numerical modeling applied to space sciences. Here, we illustrate applications and results of DINAMO in two different analyses. First, DINAMO is used to assess the ability of widely used I–T climatological models (IRI-2016, NRLMSISE-00, and HWM14), when used as drivers, to produce a realistic representation of the low-latitude electrodynamics. In order to evaluate the results, model E × B drifts are compared with observed climatology of the drifts derived from long-term observations made by the Jicamarca incoherent scatter radar. We found that the climatological I–T models are able to drive many of the features of the plasma drifts including the diurnal, seasonal, altitudinal and solar cycle variability. We also identified discrepancies between modeled and observed drifts under certain conditions. This is, in particular, the case of vertical equatorial plasma drifts during low solar flux conditions, which were attributed to a poor specification of the E -region neutral wind dynamo. DINAMO is then used to quantify the impact of meridional currents on the morphology of F -region zonal plasma drifts. Analytic representations of the equatorial drifts are commonly used to interpret observations. These representations, however, commonly ignore contributions from meridional currents. Using DINAMO we show that that these currents can modify zonal plasma drifts by up to ~ 16 m/s in the bottom-side post-sunset F -region, and up to ~ 10 m/s between 0700 and 1000 LT for altitudes above 500 km. Finally, DINAMO results show the relationship between the pre-reversal enhancement (PRE) of the vertical drifts and the vertical shear in the zonal plasma drifts with implications for equatorial spread F. 
    more » « less
  3. Abstract. Previous efforts have used pairs of closely spaced specialized receivers to measure Global Navigation Satellite System (GNSS) signals and to estimate ionospheric irregularity drifts. The relatively high cost associated with commercial GNSS-based ionospheric receivers has somewhat limited their deployment and the estimation of ionospheric drifts. The development of an alternative, low-cost, GNSS-based scintillation monitor (ScintPi) motivated us to investigate the possibility of using it to overcome this limitation. ScintPi monitors can observe signals from geostationary satellites, which can greatly simplify the estimation of the drifts. We present the results of an experiment to evaluate the use of ScintPi 3.0 to estimate ionospheric irregularity drifts. The experiment consisted of two ScintPi 3.0 deployed in Campina Grande, Brazil (7.213° S, 35.907° W; dip latitude ∼ 14° S). The monitors were spaced at a distance of 140 m in the magnetic east–west direction and targeted the estimation of the zonal drifts associated with scintillation-causing equatorial spread F (ESF) irregularities. Routine observations throughout an entire ESF season (September 2022–April 2023) were made as part of the experiment. We focused on the results of irregularity drifts derived from geostationary satellite signals. The results show that the local time variation in the estimated irregularity zonal drifts is in good agreement with previous measurements and with the expected behavior of the background zonal plasma drifts. Our results also reveal a seasonal trend in the irregularity zonal drifts. The trend follows the seasonal behavior of the zonal component of the thermospheric neutral winds as predicted by the Horizontal Wind Model (HMW14). This is explained by the fact that low-latitude ionospheric F-region plasma drifts are controlled, in great part, by Pedersen-conductivity-weighted flux-tube-integrated zonal neutral winds. The results confirm that ScintPi has the potential to contribute to new, cost-effective measurements of ionospheric irregularity drifts, in addition to scintillation and total electron content. Furthermore, the results indicate that these new ScintPi measurements can provide insight into ionosphere–thermosphere coupling. 
    more » « less
  4. Abstract Results from a dynamo electric field model are presented to examine the consistency of the widely used empirical models of low‐latitude plasma drifts and thermospheric neutral winds. The sector defined by the Jicamarca Radar measured plasma drifts is used due to the greater certainty of the empirical vertical plasma drifts. The plasma drifts produced by the Horizontal Wind Model (HWM) in a coupled ionosphere‐electric field model for geomagnetically quiet and moderate solar conditions are compared against empirical models of equatorial plasma drifts for the Peruvian sector. The HWM generates reasonable sunset prereversal enhancement of the vertical drift in all but May, June, July, and August when no prereversal enhancement exists in the empirical results. The daytime vertical drifts are deficient during all seasons. A solar diurnal and semi‐diurnal tidal forcing are required in the E region (100–150 km) to bring the HWM into better agreement as a dynamo driver for the daytime electric fields associated with the broad Solar Quiet current system. 
    more » « less
  5. null (Ed.)
    630.0 nm all-sky imaging data are used to detect airglow depletions associated with equatorial spread F. Pairs of imagers located at geomagnetically conjugate locations in the American sector at low and mid-latitudes provide information on the occurrence rate and zonal motion of airglow depletions. Airglow depletions are seen extending to magnetic latitudes as high as 25°. An asymmetric extension is observed with structures in the northern hemisphere reaching higher latitudes. By tracking the zonal motion of airglow depletions, zonal plasma drifts in the thermosphere can be inferred and their simultaneous behavior in both hemispheres investigated. Case studies using El Leoncito and Mercedes imagers in the southern hemisphere, and the respective magnetically conjugate imagers at Villa de Leyva and Arecibo, provide consistent evidence of the influence of the South Atlantic Magnetic Anomaly on the dynamics and characteristics of the thermosphere–ionosphere system at low and mid-latitudes. 
    more » « less