skip to main content

Title: First High‐Speed Video Camera Observations of a Lightning Flash Associated With a Downward Terrestrial Gamma‐Ray Flash

In this paper, we present the first high‐speed video observation of a cloud‐to‐ground lightning flash and its associated downward‐directed Terrestrial Gamma‐ray Flash (TGF). The optical emission of the event was observed by a high‐speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric‐field fast antenna, and the National Lightning Detection Network. The cloud‐to‐ground flash associated with the observed TGF was formed by a fast downward leader followed by a very intense return stroke peak current of −154 kA. The TGF occurred while the downward leader was below cloud base, and even when it was halfway in its propagation to ground. The suite of gamma‐ray and lightning instruments, timing resolution, and source proximity offer us detailed information and therefore a unique look at the TGF phenomena.

more » « less
Award ID(s):
2214044 2209584 2209583 2112904
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s.

    more » « less
  2. Abstract

    We provide an updated analysis of the gamma ray signature of a terrestrial gamma ray flash (TGF) detected by the Fermi Gamma ray Burst Monitor first reported by Pu et al. (2020, A TGF produced 3 ms prior to a negative cloud‐to‐ground return stroke was close to simultaneous with an isolated low‐frequency radio pulse during the leader’s propagation, with a polarity indicating downward moving negative charge. In previous observations, this “slow” low‐frequency signal has been strongly correlated with upward‐directed (opposite polarity) TGF events (Pu et al., 2019,; Cummer et al., 2011,, leading the authors to conclude that the Fermi gamma ray observation is actually the result of a reverse positron beam generating upward‐directed gamma rays. We investigate the feasibility of this scenario and determine a lower limit on the luminosity of the downward TGF from the perspective of gamma ray timing uncertainties, TGF Monte Carlo simulations, and meteorological analysis of a model storm cell and its possible charge structure altitudes. We determined that the most likely source altitude of the TGF reverse beam was 7.5 km ± 2.6 km, just below an estimated negative charge center at 8 km. At that altitude, the Monte Carlo simulations indicate a lower luminosity limit of 2 × 1018photons above 1 MeV for the main downward beam of the TGF, making the reverse beam detectable by the Fermi Gamma ray Burst Monitor.

    more » « less
  3. Abstract This review covers selected results of recent observations of lightning discharges performed across the entire electromagnetic spectrum (radiofrequency, optical, and energetic radiation) at the Lightning Observatory in Gainesville, Florida. The most important results include (a) characterization of the preliminary-breakdown, stepped-leader, and return-stroke processes in high-intensity (⩾50 kA) negative lightning discharges, (b) the first high-speed video images of bidirectional leader that made contact with the ground and produced a return stroke, (c) discovery of negative stepped leader branches colliding with the lateral surface of neighboring branches of the same leader, (d) new data on the occurrence context and properties of compact intracloud discharges, and (e) observation of a terrestrial gamma-ray flash that occurred during a bipolar cloud-to-ground lightning discharge. The results serve to improve our understanding of the physics of lightning with important implications for lightning modeling, lightning protection, and high-energy atmospheric physics studies. 
    more » « less
  4. Abstract

    The terrestrial gamma‐ray flash (TGF) and Energetic Thunderstorm Rooftop Array (TETRA‐II) detected 22 X‐ray/gamma‐ray flash events associated with lightning between October 2015 and March 2019 across three ground‐based detector locations in subtropical and tropical climates in Louisiana, Puerto Rico, and Panama. Each detector array consists of a set of bismuth germanate scintillators that record X‐ray and gamma‐ray bursts over the energy range 50 keV–6 MeV (million electron volts). TETRA‐II events have characteristics similar to both X‐ray bursts associated with lightning leaders and TGFs: sub‐millisecond duration, photons up to MeV energies, and association with nearby lightning (typically within 3 km). About 20 of the 22 events are geolocated to individual lightning strokes via spatiotemporally coincident sferics. An examination of radar reflectivity and derived products related to events located within the Next Generation Weather Radar (NEXRAD) monitoring region indicates that events occur within mature cells of severe and non‐severe multicellular and squall line thunderstorms, with core echo tops which are at or nearing peak altitude. Events occur in both high lightning frequency thunderstorm cells and low lightning frequency cells. Events associated with high frequency cells occur within 5 min of significant lightning jumps. Among NEXRAD‐monitored events, hail is present within 8 km and 5 min of all except a single low‐altitude cold weather thunderstorm. An association is seen with maximum thunderstorm development, lightning jumps, and hail cells, indicating that the TETRA‐II X‐ray/gamma‐ray events are associated with the peak storm electrification and development of electric fields necessary for the acceleration of electrons to high energies.

    more » « less
  5. Abstract

    The production mechanism for terrestrial gamma ray flashes (TGFs) is not entirely understood, and details of the corresponding lightning activity and thunderstorm charge structure have yet to be fully characterized. Here we examine sub‐microsecond VHF (14–88 MHz) radio interferometer observations of a 247‐kA peak‐current EIP, or energetic in‐cloud pulse, a reliable radio signature of a subset of TGFs. The EIP consisted of three high‐amplitude sferic pulses lasting60μs in total, which peaked during the second (main) pulse. The EIP occurred during a normal‐polarity intracloud lightning flash that was highly unusual, in that the initial upward negative leader was particularly fast propagating and discharged a highly concentrated region of upper‐positive storm charge. The flash was initiated by a high‐power (46 kW) narrow bipolar event (NBE), and the EIP occurred about 3 ms later after3 km upward flash development. The EIP was preceded200μs by a fast6 × 106m/s upward negative breakdown and immediately preceded and accompanied by repeated sequences of fast (107–108m/s) downward then upward streamer events each lasting 10 to 20μs, which repeatedly discharged a large volume of positive charge. Although the repeated streamer sequences appeared to be a characteristic feature of the EIP and were presumably involved in initiating it, the EIP sferic evolved independently of VHF‐producing activity, supporting the idea that the sferic was produced by relativistic discharge currents. Moreover, the relativistic currents during the main sferic pulse initiated a strong NBE‐like event comparable in VHF power (115 kW) to the highest‐power NBEs.

    more » « less