Serverless computing is an emerging event-driven programming model that accelerates the development and deployment of scalable web services on cloud computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge-based, IoT deployments. In this work, we design and develop STOIC (Serverless TeleOperable HybrId Cloud), an IoT application deployment and offloading system that extends the serverless model in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g. GPU resources) for serverless function execution when available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use. Finally, we empirically evaluate STOIC using real-world machine learning applications and multi-tier IoT deployments (edge and cloud). We show that STOIC can be used for training image processing workloads (for object recognition) – once thought too resource intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92% to 97%.
more »
« less
Laminar: Dataflow Programming for Serverless IoT Applications
Serverless computing has increased in popularity as a programming model for “Internet of Things” (IoT) applications that amalgamate IoT devices, edge-deployed computers and systems, and the cloud to interoperate. In this paper, we present Laminar – a dataflow pro- gram representation for distributed IoT application programming – and describe its implementation based on a network-transparent, event-driven, serverless computing infrastructure that uses append- only log storage to store all program state. We describe the initial implementation of Laminar, discuss some useful properties we obtained by leveraging log-based data structures and triggered com- putations of the underlying serverless runtime, and illustrate its performance and reliability characteristics using a set of benchmark applications.
more »
« less
- PAR ID:
- 10435527
- Date Published:
- Journal Name:
- Proceedings of the 1st Workshop on SErverless Systems, Applications and MEthodologies
- Page Range / eLocation ID:
- 5 - 11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Cloud computing has grown because of lowered costs due to economies of scale and multiplexing. Serverless computing exploits multiplexing in cloud computing however, for low latency required by IoT applications, the cloud should be moved nearer to the IoT device and the cold start problem should be addressed. Using a real-world dataset, we showed through implementation in an open-source cloud environment based on Knative that a serverless approach to manage IoT traffic is feasible, uses less resources than a serverfull approach and traffic prediction with prefetching can mitigate the cold start delay penalty. However applying the Knative framework directly to IoT traffic without considering the execution context gives unnecessary overhead.more » « less
-
Serverless computing is a new cloud programming and deployment paradigm that is receiving wide-spread uptake. Serverless offerings such as Amazon Web Services (AWS) Lambda, Google Functions, and Azure Functions automatically execute simple functions uploaded by developers, in response to cloud-based event triggers. The serverless abstraction greatly simplifies integration of concurrency and parallelism into cloud applications, and enables deployment of scalable distributed systems and services at very low cost. Although a significant first step, the serverless abstraction requires tools that software engineers can use to reason about, debug, and optimize their increasingly complex, asynchronous applications. Toward this end, we investigate the design and implementation of GammaRay, a cloud service that extracts causal dependencies across functions and through cloud services, without programmer intervention. We implement GammaRay for AWS Lambda and evaluate the overheads that it introduces for serverless micro-benchmarks and applications written in Python.more » « less
-
Serverless computing is a promising new event- driven programming model that was designed by cloud vendors to expedite the development and deployment of scalable web services on cloud computing systems. Using the model, developers write applications that consist of simple, independent, stateless functions that the cloud invokes on-demand (i.e. elastically), in response to system-wide events (data arrival, messages, web requests, etc.). In this work, we present STOIC (Serverless TeleOperable HybrId Cloud), an application scheduling and deployment system that extends the serverless model in two ways. First, it uses the model in a distributed setting and schedules application functions across multiple cloud systems. Second, STOIC sup- ports serverless function execution using hardware acceleration (e.g. GPU resources) when available from the underlying cloud system. We overview the design and implementation of STOIC and empirically evaluate it using real-world machine learning applications and multi-tier (e.g. edge-cloud) deployments. We find that STOIC’s combined use of edge and cloud resources is able to outperform using either cloud in isolation for the applications and datasets that we consider.more » « less
-
null (Ed.)A decentralized application involves multiple autonomous principals, e.g., humans and organizations. Autonomy motivates (1) specifying a decentralized application via a protocol that captures the interactions between the principals, and (2) a programming model that enables each principal to independently (from other principals) construct its own protocol-compliant agent. An agent encodes its principal's decision making and represents it in the application. We contribute Deserv, the first protocol-based programming model for decentralized applications that is suited to the cloud. Specifically, Deserv demonstrates how to leverage function-as-a-service (FaaS), a popular serverless programming model, to implement agents. A notable feature of Deserv is the use declarative protocols to specify interactions. Declarative protocols support implementing stateful agents in a manner that naturally exploits the concurrency and autoscaling benefits offered by serverless computing.more » « less
An official website of the United States government

