We present here Bedmap3, the latest suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of Antarctica south of 60degS. Bedmap3 incorporates and adds to all post-1950s datasets previously used for Bedmap1 and Bedmap2, including 84 new aero-geophysical surveys by 15 data providers, an additional 52 million data points and 1.9 million line-kilometres of measurement. This has filled notable gaps in East Antarctica, including the South Pole and Pensacola basin, Dronning Maud Land, Recovery Glacier and Dome Fuji, Princess Elizabeth Land, plus the Antarctic Peninsula, West Antarctic coastlines, and the Transantarctic Mountains. Our new Bedmap3/RINGS grounding line similarly consolidates multiple recent mappings into a single, spatially coherent feature. Combined with updated maps of surface topography, ice shelf thickness, rock outcrops and bathymetry, Bedmap3 reveals in much greater detail the subglacial landscape and distribution of Antarctica's ice, providing new opportunities to interpret continental-scale landscape evolution and to model in detail the past and future evolution of the Antarctic ice sheets. Sponsored by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action group aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international scientific community. The associated Bedmap datasets are listed here: https://www.bas.ac.uk/project/bedmap/#data 
                        more » 
                        « less   
                    
                            
                            Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data
                        
                    
    
            Abstract. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss andthe ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce newgridded maps of ice thickness and bed topography for the internationalscientific community, but also to standardize and make available all thegeophysical survey data points used in producing the Bedmap griddedproducts. Here, we document the survey data used in the latest iteration,Bedmap3, incorporating and adding to all of the datasets previously used forBedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically,we describe the processes used to standardize and make these and futuresurveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal(https://bedmap.scar.org, last access: 1 March 2023) created to provideunprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data heldwithin it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023). See the Data availability section for the complete list of datasets. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10435747
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 15
- Issue:
- 7
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 2695 to 2710
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            <p>NSF COLDEX performed two airborne campaigns from South Pole Station over the Southern Flank of Dome A and 2022-23 and 2023-24, searching for a potential site of a continuous ice core that could sample the mid-Pleistocene transition. Ice thickness data extracted from the MARFA radar system has allow for a new understanding of this region.</p> <p>Here we generate crustal scale maps of ice thickness, bed elevation, specularity content, subglacial RMS deviation and fractional basal ice thickness with 1 km sampling, and 10 km resolution. We include both masked and unmasked grids.</p> <p> The projection is in the SCAR standard ESPG:3031 polar stereographic projection with true scale at 71˚S.</p> <p>These geotiffs were generated using performed using GMT6.5 (<a href="https://doi.org/10.1029/2019GC008515">Wessel et al., 2019</a>) using the pygmt interface, by binning the raw data to 2.5 km cells, and using the <a href="https://github.com/sakov/nn-c"> nnbathy </a> program to apply natural neighbor interpolation to 1 km sampling. A 10 km Gaussian filter - representing typical lines spacings - was applied and then a mask was applied for all locations where the nearest data point was further than 8 km. </p> Ice thickness, bed elevation and RMS deviation @ 400 m length scale (<a href="http://dx.doi.org/10.1029/2000JE001429">roughness</a>) data includes the following datasets: <ul> <li> UTIG/CRESIS <a href="https://doi.org/10.18738/T8/J38CO5">NSF COLDEX Airborne MARFA data</a></li> <li> British Antarctic Survey <a href="https://doi.org/10.5285/0f6f5a45-d8af-4511-a264-b0b35ee34af6">AGAP-North</a></li> <li> LDEO <a href="https://doi.org/10.1594/IEDA/317765"> AGAP-South </a></li> <li> British Antarctic Survey <a href="https://doi.org/10.5270/esa-8ffoo3e">Polargap</a></li> <li> UTIG Support Office for Airborne Research <a href="https://doi.org/10.15784/601588">Pensacola-Pole Transect (PPT) </a></li> <li> NASA/CReSIS <a href="https://doi.org/10.5067/GDQ0CUCVTE2Q"> 2016 and 2018 Operation Ice Bridge </a> </li> <li> ICECAP/PRIC <a href="https://doi.org/10.15784/601437"> SPICECAP Titan Dome Survey </a> </ul> <p>Specularity content (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al. 2014</a>) is compiled from <a href="https://doi.org/10.18738/T8/KHUT1U"> Young et al. 2025a </a> and <a href="https://doi.org/10.18738/T8/6T5JS6"> Young et al. 2025b</a>.</p> <p>Basal ice fractional thickness is complied from manual interpretation by Vega Gonzàlez, Yan and Singh. </p> <p>Code to generated these grids can be found at <a href="https://github.com/smudog/COLDEX_dichotomy_paper_2025"> at github.com </a></p>more » « less
- 
            Hercules Dome, Antarctica, has long been identified as a prospective deep ice core site due to the undisturbed internal layering, climatic setting and potential to obtain proxy records from the Last Interglacial (LIG) period when the West Antarctic ice sheet may have collapsed. We performed a geophysical survey using multiple ice-penetrating radar systems to identify potential locations for a deep ice core at Hercules Dome. The surface topography, as revealed with recent satellite observations, is more complex than previously recognized. The most prominent dome, which we term ‘West Dome’, is the most promising region for a deep ice core for the following reasons: (1) bed-conformal radar reflections indicate minimal layer disturbance and extend to within tens of meters of the ice bottom; (2) the bed is likely frozen, as evidenced by both the shape of the measured vertical ice velocity profiles beneath the divide and modeled ice temperature using three remotely sensed estimates of geothermal flux and (3) models of layer thinning have 132 ka old ice at 45–90 m above the bed with an annual layer thickness of ~1 mm, satisfying the resolution and preservation needed for detailed analysis of the LIG period.more » « less
- 
            Antarctic subglacial lakes can play an important role in ice sheet dynamics, biology, geology, and oceanography, but it is difficult to definitively constrain their character and locations. Subglacial lake locations are related to factors including heat flux, ice surface slope, ice thickness, and bed topography, though these relationships are not fully quantified. Bed topography is particularly important for determining where water flows and accumulates, but digital elevation models of the ice sheet bed rely on interpolation and are unrealistically smooth, biasing estimates of subglacial lake location and surface area. To address this issue, we use geostatistical methods to simulate realistically rough bed topography. We use our simulated topography to predict subglacial lake distribution across the continent using a binomial logistic regression, which uses physical parameters and known lake locations to calculate the probabilities of lake occurrences. Our results suggest that topography models interpolated without appropriate geostatistics overestimate subglacial lake surface area and that total lake surface area is lower than previously predicted. We find that radar‐detected lakes are more likely to occur in the interior of East Antarctica, while altimetry‐detected (active) lakes are expected to be found in West Antarctica and near the grounding line. We observe that radar‐detected lakes have a high correlation with heat flux and ice thickness, while active lakes are associated with higher ice velocity.more » « less
- 
            null (Ed.)Abstract Airborne radio-echo sounding (RES) surveys are widely used to measure ice-sheet bed topography. Measuring bed topography as accurately and widely as possible is of critical importance to modelling ice dynamics and hence to constraining better future ice response to climate change. Measurement accuracy of RES surveys is influenced both by the geometry of bed topography and the survey design. Here we develop a novel approach for simulating RES surveys over glaciated terrain, to quantify the sensitivity of derived bed elevation to topographic geometry. Furthermore, we investigate how measurement errors influence the quantification of glacial valley geometry. We find a negative bias across RES measurements, where off-nadir return measurement error is typically −1.8 ± 11.6 m. Topographic highlands are under-measured an order of magnitude more than lowlands. Consequently, valley depth and cross-sectional area are largely under-estimated. While overall estimates of ice thickness are likely too high, we find large glacier valley cross-sectional area to be under-estimated by −2.8 ± 18.1%. Therefore, estimates of ice flux through large outlet glaciers are likely too low when this effect is not taken into account. Additionally, bed mismeasurements potentially impact our appreciation of outlet-glacier stability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    