skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Paleolakes of Eastern Africa: Zeolites, Clay Minerals, and Climate
The eastern branch of the East African Rift System hosts many shallow modern lakes and paleolakes, which can be sensitive recorders of changing climate conditions (complicated by tectonics) during the past few million years. However, many of such lakes are saline–alkaline (salty and high pH), and these conditions do not easily preserve pollen and other biologically derived paleoclimate indicators. Fortunately, some preserved minerals that formed in these extreme environments reflect subtle shifts in lake water chemistry (controlled by changes in climate conditions) and therefore provide a continuous record of local and regional climate change. We present two different mineral proxies (zeolites and clays) from two different paleolake basins (Olduvai Gorge, Tanzania, and Chew Bahir, Ethiopia) as examples.  more » « less
Award ID(s):
2002509
PAR ID:
10435840
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Elements
Volume:
19
Issue:
2
ISSN:
1811-5209
Page Range / eLocation ID:
96 to 103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Empirical evidence demonstrates that lakes and reservoirs are warming acrossthe globe. Consequently, there is an increased need to project futurechanges in lake thermal structure and resulting changes in lakebiogeochemistry in order to plan for the likely impacts. Previous studies ofthe impacts of climate change on lakes have often relied on a single modelforced with limited scenario-driven projections of future climate for arelatively small number of lakes. As a result, our understanding of theeffects of climate change on lakes is fragmentary, based on scatteredstudies using different data sources and modelling protocols, and mainlyfocused on individual lakes or lake regions. This has precludedidentification of the main impacts of climate change on lakes at global andregional scales and has likely contributed to the lack of lake water qualityconsiderations in policy-relevant documents, such as the Assessment Reportsof the Intergovernmental Panel on Climate Change (IPCC). Here, we describe asimulation protocol developed by the Lake Sector of the Inter-SectoralImpact Model Intercomparison Project (ISIMIP) for simulating climate changeimpacts on lakes using an ensemble of lake models and climate changescenarios for ISIMIP phases 2 and 3. The protocol prescribes lakesimulations driven by climate forcing from gridded observations anddifferent Earth system models under various representative greenhouse gasconcentration pathways (RCPs), all consistently bias-corrected on a0.5∘ × 0.5∘ global grid. In ISIMIP phase 2, 11 lakemodels were forced with these data to project the thermal structure of 62well-studied lakes where data were available for calibration underhistorical conditions, and using uncalibrated models for 17 500 lakesdefined for all global grid cells containing lakes. In ISIMIP phase 3, thisapproach was expanded to consider more lakes, more models, and moreprocesses. The ISIMIP Lake Sector is the largest international effort toproject future water temperature, thermal structure, and ice phenology oflakes at local and global scales and paves the way for future simulations ofthe impacts of climate change on water quality and biogeochemistry in lakes. 
    more » « less
  2. Abstract Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter‐period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on these large and dynamic ecosystems may require investment in new, specialized research infrastructure. Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration between physicists, geochemists, and biologists working on the world's seasonally freezing lakes and seas. 
    more » « less
  3. Diatom-derived highly branched isoprenoid lipids (HBIs) are found extensively in marine sediments, but to date are only reported in a few lacustrine sediments. To expand on prior lake studies, we collected lake surface sediment samples, water samples, and filtered photic zone water from 50 lakes from the Great Plains to the northeastern United States. Samples were collected in May and June and a few sites were revisited in September and October. Studied lakes vary in climate, water chemistry (e.g., pH, salinity, alkalinity), size, and trophic states. They also vary in their diatom species compositions with 344 diatom taxa reported. We characterized HBI assemblages in each lake and found 11 different HBI compounds including one C20:0 HBI, five C20:1 HBI isomers, C21:0 HBI, C25:2 HBI, two C25:3 HBIs, and C25:4 HBI. C20:0 HBI was present in all but two lakes and was often the most abundant HBI present. HBIs were also detected in nearly all the water filter samples indicating they are produced in the photic zone. C20:0 HBI was present in all freshwater lakes, but not present or at very low con- centration in the highest salinity lakes, which were dominated by C21:0 HBI and C25 HBIs. Many of the lakes were dominated by diatom genera and species that are not known to be HBI-producing genera, suggesting there are unrecognized HBI-producing diatom taxa. This inventory, illustrating the widespread presence and diversity of HBIs from lakes across large differences in water chemistries and climate, further suggests that HBIs may be useful diatom biomarkers for paleoclimate applications. 
    more » « less
  4. Climate change is affecting mountain ecosystems by increasing vegetation coverage and altering meteorological conditions. These changes are likely to impact the timing and magnitude of dissolved organic matter (DOM) inputs to lakes from the surrounding catchment. We examined temporal dynamics of DOM using in situ optical sensors that measured DOM fluorescence (fDOM) through the ice-free season in five lakes with differing catchment characteristics. We also measured changes in lake level and compiled daily meteorological data from nearby weather stations. At a seasonal time scale, fDOM dynamics occurred in two phases. fDOM declined in the first phase, which lasted until late July – mid-August, and corresponded to a decline in lake level following spring snowmelt. This decline was more pronounced in lakes with more vegetated catchments. At a shorter time scale, fDOM increased following precipitation events with a 0- to 1-day lag. Rates of fDOM increase per centmetre change in lake level were greater in lakes with vegetated catchments. As climate change increases vegetation coverage, DOM will likely become more dynamic at daily and seasonal time scales and impact water transparency and productivity of mountain lakes. 
    more » « less
  5. Abstract Millions of lakes worldwide are distributed at latitudes or elevations resulting in the formation of lake ice during winter. Lake ice affects the transfer of energy, heat, light, and material between lakes and their surroundings creating an environment dramatically different from open‐water conditions. While this fundamental restructuring leads to distinct gradients in ions, dissolved gases, and nutrients throughout the water column, surprisingly little is known about the resulting effects on ecosystem processes and food webs, highlighting the lack of a general limnological framework that characterizes the structure and function of lakes under a gradient of ice cover. Drawing from the literature and three novel case studies, we present the Lake Ice Continuum Concept (LICC) as a model for understanding how key aspects of the physical, chemical, and ecological structure and function of lakes vary along a continuum of winter climate conditions mediated by ice and snow cover. We examine key differences in energy, redox, and ecological community structure and describe how they vary in response to shifts in physical mixing dynamics and light availability for lakes with ice and snow cover, lakes with clear ice alone, and lakes lacking winter ice altogether. Global change is driving ice covered lakes toward not only warmer annual average temperatures but also reduced, intermittent or no ice cover. The LICC highlights the wide range of responses of lakes to ongoing climate‐driven changes in ice cover and serves as a reminder of the need to understand the role of winter in the annual aquatic cycle. 
    more » « less