skip to main content


This content will become publicly available on July 31, 2024

Title: A Survey on Data-driven COVID-19 and Future Pandemic Management
The COVID-19 pandemic has resulted in more than 440 million confirmed cases globally and almost 6 million reported deaths as of March 2022. Consequently, the world experienced grave repercussions to citizens’ lives, health, wellness, and the economy. In responding to such a disastrous global event, countermeasures are often implemented to slow down and limit the virus’s rapid spread. Meanwhile, disaster recovery, mitigation, and preparation measures have been taken to manage the impacts and losses of the ongoing and future pandemics. Data-driven techniques have been successfully applied to many domains and critical applications in recent years. Due to the highly interdisciplinary nature of pandemic management, researchers have proposed and developed data-driven techniques across various domains. However, a systematic and comprehensive survey of data-driven techniques for pandemic management is still missing. In this article, we review existing data analysis and visualization techniques and their applications for COVID-19 and future pandemic management with respect to four phases (namely, Response, Recovery, Mitigation, and Preparation) in disaster management. Data sources utilized in these studies and specific data acquisition and integration techniques for COVID-19 are also summarized. Furthermore, open issues and future directions for data-driven pandemic management are discussed.  more » « less
Award ID(s):
2301552 2125165
NSF-PAR ID:
10436850
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACM Computing Surveys
Volume:
55
Issue:
7
ISSN:
0360-0300
Page Range / eLocation ID:
1 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective We aimed to identify opportunities for application of human factors knowledge base to mitigate disaster management (DM) challenges associated with the unique characteristics of the COVID-19 pandemic. Background The role of DM is to minimize and prevent further spread of the contagion over an extended period of time. This requires addressing large-scale logistics, coordination, and specialized training needs. However, DM-related challenges during the pandemic response and recovery are significantly different than with other kinds of disasters. Method An expert review was conducted to document issues relevant to human factors and ergonomics (HFE) in DM. Results The response to the COVID-19 crisis has presented complex and unique challenges to DM and public health practitioners. Compared to other disasters and previous pandemics, the COVID-19 outbreak has had an unprecedented scale, magnitude, and propagation rate. The high technical complexity of response and DM coupled with lack of mental model and expertise to respond to such a unique disaster has seriously challenged the response work systems. Recent research has investigated the role of HFE in modeling DM systems’ characteristics to improve resilience, accelerating emergency management expertise, developing agile training methods to facilitate dynamically changing response, improving communication and coordination among system elements, mitigating occupational hazards including guidelines for the design of personal protective equipment, and improving procedures to enhance efficiency and effectiveness of response efforts. Conclusion This short review highlights the potential for the field’s contribution to proactive and resilient DM for the ongoing and future pandemics. 
    more » « less
  2. null (Ed.)
    Worldwide, at the time this article was written, there are over 127 million cases of patients with a confirmed link to COVID-19 and about 2.78 million deaths reported. With limited access to vaccine or strong antiviral treatment for the novel coronavirus, actions in terms of prevention and containment of the virus transmission rely mostly on social distancing among susceptible and high-risk populations. Aside from the direct challenges posed by the novel coronavirus pandemic, there are serious and growing secondary consequences caused by the physical distancing and isolation guidelines, among vulnerable populations. Moreover, the healthcare system’s resources and capacity have been focused on addressing the COVID-19 pandemic, causing less urgent care, such as physical neurorehabilitation and assessment, to be paused, canceled, or delayed. Overall, this has left elderly adults, in particular those with neuromusculoskeletal (NMSK) conditions, without the required service support. However, in many cases, such as stroke, the available time window of recovery through rehabilitation is limited since neural plasticity decays quickly with time. Given that future waves of the outbreak are expected in the coming months worldwide, it is important to discuss the possibility of using available technologies to address this issue, as societies have a duty to protect the most vulnerable populations. In this perspective review article, we argue that intelligent robotics and wearable technologies can help with remote delivery of assessment, assistance, and rehabilitation services while physical distancing and isolation measures are in place to curtail the spread of the virus. By supporting patients and medical professionals during this pandemic, robots, and smart digital mechatronic systems can reduce the non-COVID-19 burden on healthcare systems. Digital health and cloud telehealth solutions that can complement remote delivery of assessment and physical rehabilitation services will be the subject of discussion in this article due to their potential in enabling more effective and safer NMSDK rehabilitation, assistance, and assessment service delivery. This article will hopefully lead to an interdisciplinary dialogue between the medical and engineering sectors, stake holders, and policy makers for a better delivery of care for those with NMSK conditions during a global health crisis including future pandemics. 
    more » « less
  3. Abstract

    Field courses can provide formative experiences that also reduce disparities in STEM education. Impacts of the ongoing COVID‐19 pandemic on‐field programs have been particularly severe, as many institutions shifted to online instruction. Some courses retained in‐person field experiences during the pandemic, and achieved high student learning outcomes. Here, I describe an approach to mitigating risk of COVID‐19 and other hazards during expedition‐based field courses, and student learning outcomes achieved using that approach. I applied comprehensive risk management to in‐person field expeditions that treated COVID‐19 as a hazard, requiring mitigation to maintain an acceptable low level of risk. Prior to broad availability of COVID‐19 vaccines, we applied a coronavirus‐free “bubble” strategy in which all participants passed a COVID‐19 PCR test immediately before departure and then avoided contact with people outside our bubble. In the future, vaccination can reduce risk further. We implemented additional safety factors to reduce risk of incidents that could require evacuation into medical facilities overloaded with COVID‐19 patients. The courses were successful: we had no infections or other serious incidents and student learning outcomes were transformative. The approach provides a model for conducting immersive field courses during the pandemic and beyond. Several field course networks are implementing similar approaches to restore valuable field education opportunities that have declined during the pandemic.

     
    more » « less
  4. Abstract Coronavirus disease (COVID-19) is a contagious respiratory disease caused by the SARS-CoV-2 virus. The clinical phenotypes are variable, ranging from spontaneous recovery to serious illness and death. On March 2020, a global COVID-19 pandemic was declared by the World Health Organization (WHO). As of February 2023, almost 670 million cases and 6,8 million deaths have been confirmed worldwide. Coronaviruses, including SARS-CoV-2, contain a single-stranded RNA genome enclosed in a viral capsid consisting of four structural proteins: the nucleocapsid (N) protein, in the ribonucleoprotein core, the spike (S) protein, the envelope (E) protein, and the membrane (M) protein, embedded in the surface envelope. In particular, the E protein is a poorly characterized viroporin with high identity amongst all the β-coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43) and a low mutation rate. Here, we focused our attention on the study of SARS-CoV-2 E and M proteins, and we found a general perturbation of the host cell calcium (Ca 2+ ) homeostasis and a selective rearrangement of the interorganelle contact sites. In vitro and in vivo biochemical analyses revealed that the binding of specific nanobodies to soluble regions of SARS-CoV-2 E protein reversed the observed phenotypes, suggesting that the E protein might be an important therapeutic candidate not only for vaccine development, but also for the clinical management of COVID designing drug regimens that, so far, are very limited. 
    more » « less
  5. Abstract Natural hazards cause disruptions in access to critical facilities, such as grocery stores, impeding residents’ ability to prepare for and cope with hardships during the disaster and recovery; however, disrupted access to critical facilities is not equal for all residents of a community. In this study, we examine disparate access to grocery stores in the context of the 2017 Hurricane Harvey in Harris County, Texas. We utilized high-resolution location-based datasets in implementing spatial network analysis and dynamic clustering techniques to uncover the overall disparate access to grocery stores for socially vulnerable populations during different phases of the disaster. Three access indicators are examined using network-centric measures: number of unique stores visited, average trip time to stores, and average distance to stores. These access indicators help us capture three dimensions of access: redundancy , rapidity , and proximity . The findings show the insufficiency of focusing merely on the distributional factors, such as location in a food desert and number of facilities, to capture the disparities in access, especially during the preparation and impact/short-term recovery periods. Furthermore, the characterization of access by considering combinations of access indicators reveals that flooding disproportionally affects socially vulnerable populations. High-income areas have better access during the preparation period as they are able to visit a greater number of stores and commute farther distances to obtain supplies. The conclusions of this study have important implications for urban development (facility distribution), emergency management, and resource allocation by identifying areas most vulnerable to disproportionate access impacts using more equity-focused and data-driven approaches. 
    more » « less