Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 10 18 cm −3 were achieved in bulk doping of Mg in Al 0.6 Ga 0.4 N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 10 19 cm −3 ) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of V N -related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.
more »
« less
High conductivity and low activation energy in p-type AlGaN
Record-low p-type resistivities of 9.7 and 37 Ω cm were achieved in Al 0.7 Ga 0.3 N and Al 0.8 Ga 0.2 N films, respectively, grown on single-crystal AlN substrate by metalorganic chemical vapor deposition. A two-band conduction model was introduced to explain the anomalous thermal behavior of resistivity and the Hall coefficient. Relatively heavy Mg doping (5 × 10 19 cm −3 ), in conjunction with compensation control, enabled the formation of an impurity band exhibiting a shallow activation energy of ∼30 meV for a wide temperature range. Valence band conduction associated with a large Mg ionization energy was dominant above 500 K. The apparently anomalous results deviating from the classical semiconductor physics were attributed to fundamentally different Hall scattering factors for impurity and valence band conduction. This work demonstrates the utility of impurity band conduction to achieve technologically relevant p-type conductivity in Al-rich AlGaN.
more »
« less
- PAR ID:
- 10437311
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 122
- Issue:
- 9
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- 092103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A two-band transport model is proposed to explain electrical conduction in graded aluminum gallium nitride layers, where the free hole conduction in the valence band is favored at high temperatures and hopping conduction in the impurity band dominates at low temperatures. The model simultaneously explains the significantly lowered activation energy for p-type conduction (∼10 meV), a nearly constant sheet conductivity at lower temperatures (200–330 K), and the anomalous reversal of the Hall coefficient caused by the negative sign of the Hall scattering factor in the hopping conduction process. A comparison between the uniform and graded samples suggests that compositional grading significantly enhances the probability of phonon-assisted hopping transitions between the Mg atoms.more » « less
-
High p-conductivity (0.7 Ω−1 cm−1) was achieved in high-Al content AlGaN via Mg doping and compositional grading. A clear transition between the valence band and impurity band conduction mechanisms was observed. The transition temperature depended strongly on the compositional gradient and to some degree on the Mg doping level. A model is proposed to explain the role of the polarization field in enhancing the conductivity in Mg-doped graded AlGaN films and the transition between the two conduction types. This study offers a viable path to technologically useful p-conductivity in AlGaN.more » « less
-
X Ray Photoelectron Spectroscopy was used to measure valence band offsets for Al 2 O 3 deposited by Atomic Layer Deposition on α -(Al x Ga 1-x ) 2 O 3 alloys over a wide range of Al contents, x, from 0.26–0.74, corresponding to a bandgap range from 5.8–7 eV. These alloys were grown by Pulsed Laser Deposition. The band alignments were type I (nested) at x <0.5, with valence band offsets 0.13 eV for x = 0.26 and x = 0.46. At higher Al contents, the band alignment was a staggered alignment, with valence band offsets of − 0.07 eV for x = 0.58 and −0.17 for x = 0.74, ie. negative valence band offsets in both cases. The conduction band offsets are also small at these high Al contents, being only 0.07 eV at x = 0.74. The wide bandgap of the α -(Al x Ga 1-x ) 2 O 3 alloys makes it difficult to find dielectrics with nested band alignments over the entire composition range.more » « less
-
Abstract In this work, an alternative scheme to estimate the resistivity and ionization energy of Al-rich p-AlGaN epitaxial films is developed using two large-area ohmic contacts. Accordingly, the resistivities measured using current–voltage measurements were observed to corroborate the Hall measurements in the Van der Pauw configuration. A free hole concentration of ∼1.5 × 10 17 cm −3 and low ionization energy of ∼65 meV in Mg-doped Al 0.7 Ga 0.3 N films is demonstrated. Nearly an order of magnitude lower hydrogen concentration than Mg in the as-grown AlGaN films is thought to reduce the Mg passivation and enable higher hole concentrations in Al-rich p-AlGaN films, compared to p-GaN films. The alternate methodology proposed in this work is expected to provide a simpler pathway to evaluate the electrical characteristics of Al-rich p-AlGaN films for future III-nitride ultraviolet light emitters.more » « less
An official website of the United States government

