skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enrichment of saccharides at the air–water interface: a quantitative comparison of sea surface microlayer and foam
Environmental context Saccharides contribute substantially to dissolved organic carbon in the ocean and are enriched at the ocean surface. In this study, we demonstrate that saccharides are more enriched in persistent whitecap foam compared to the sea surface. The maturation of bubbles at the air–water interface is thus expected to enhance the enrichment of organic matter at the ocean surface and ultimately in the sea spray aerosol that forms when bubbles burst at the ocean surface. Rationale Organic matter accumulates at the ocean surface. Herein, we provide the first quantitative assessment of the enrichment of dissolved saccharides in persistent whitecap foam and compare this enrichment to the sea surface microlayer (SSML) during a 9 day mesocosm experiment involving a phytoplankton bloom generated in a Marine Aerosol Reference Tank (MART). Methodology Free monosaccharides were quantified directly, total saccharides were determined following mild acid hydrolysis and the oligo/polysaccharide component was determined as the difference between total and free monosaccharides. Results Total saccharides contributed a significant fraction of dissolved organic carbon (DOC), accounting for 13% of DOC in seawater, 27% in SSML and 31% in foam. Median enrichment factors (EFs), calculated as the ratio of the concentrations of saccharides relative to sodium in SSML or foam to that of seawater, ranged from 1.7 to 6.4 in SSML and 2.1–12.1 in foam. Based on median EFs, xylitol, mannitol, glucose, galactose, mannose, xylose, fucose, rhamnose and ribose were more enriched in foam than SSML. Discussion The greatest EFs for saccharides coincided with high chlorophyll levels, indicating increasing ocean surface enrichment of saccharides during phytoplankton blooms. Higher enrichments of organic matter in sea foam over the SSML indicate that surface active organic compounds become increasingly enriched on persistent bubble film surfaces. These findings help to explain how marine organic matter becomes highly enriched in sea spray aerosol that is generated by bursting bubbles at the ocean surface.  more » « less
Award ID(s):
1801971
PAR ID:
10437768
Author(s) / Creator(s):
; ; ;
Editor(s):
Croot, Peter
Date Published:
Journal Name:
Environmental Chemistry
Volume:
19
Issue:
8
ISSN:
1448-2517
Page Range / eLocation ID:
506 to 516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent cationic bridging interactions. Ca2+ induces the greatest extent of alginate co-adsorption to the monolayer, evidenced by the ~30% increase in surface coverage, whereas Mg2+ only facilitates one-third the extent of co-adsorption at seawater-relevant cation concentrations due to its strong hydration propensity. Na+ cations alone do not facilitate alginate co-adsorption, and palmitic acid protonation hinders the formation of divalent cationic bridges between the palmitate and alginate carboxylate moieties. Alginate co-adsorption is largely confined to the interfacial region beneath the monolayer headgroups, so surface pressure, and thus monolayer surface coverage, only changes the amount of alginate co-adsorption by less than 5%. Our results provide physical and molecular characterization of a potentially significant polysaccharide enrichment mechanism within the SSML. 
    more » « less
  2. Field measurements have shown that sub-micrometer sea spray aerosol (SSA) is significantly enriched in organic material, of which a large fraction has been attributed to soluble saccharides. Existing mechanistic models of SSA production struggle to replicate the observed enhancement of soluble organic material. Here, we assess the role for divalent cation mediated co-adsorption of charged surfactants and saccharides in the enrichment of soluble organic material in SSA. Using measurements of particle supersaturated hygroscopicity, we calculate organic volume fractions for molecular mimics of SSA generated from a Marine Aerosol Reference Tank. Large enhancements in SSA organic volume fractions (Xorg > 0.2) were observed for 50 nm dry diameter (dp) particles in experiments where cooperative ionic interactions were favorable (e.g., palmitic acid, Mg2+, and glucuronic acid) at seawater total organic carbon concentrations (<1.15 mM C) and ocean pH. Significantly smaller SSA organic volume fractions (Xorg < 1.5 × 10−3) were derived from direct measurements of soluble saccharide concentrations in collected SSA with dry diameters <250 nm, suggesting that organic enrichment is strongly size dependent. The results presented here indicate that divalent cation mediated co-adsorption of soluble organics to insoluble surfactants at the ocean surface may contribute to the enrichment of soluble saccharides in SSA. The extent to which this mechanism explains the observed enhancement of saccharides in nascent SSA depends strongly on the concentration, speciation, and charge of surfactants and saccharides in the sea surface microlayer. 
    more » « less
  3. Abstract Red tide is caused by the accumulation of Karenia (K.) brevis, which produces brevetoxin (BTx), a neurotoxin. Excreted BTx is incorporated into sea spray aerosol (SSA), which is created from the bursting of bubbles at the ocean’s surface. For the first time, this study measures the enrichment factor of BTx in K. brevis algal aerosol. During red-tide events in 2021 and 2022, aerosol and water samples were collected from Gulf Coast beaches in Southwest Florida with various levels of K. brevis growth. The concentrations of BTx in SSA were measured using an enzyme-linked immunosorbent assay kit. The concentrations of both aerosolized BTx and organic matter (OM) were normalized using that of sodium ions and were shown to be significantly higher than those observed in seawater. Lipophilic BTx is present in SSA at concentrations that are 2-4 orders of magnitude higher than seawater, and 1-2 orders of magnitude higher than concentrations of OM in SSA. Enrichment of aerosolized BTx was also simulated in the algal culture tank with two different aerosol generation methods. The estimated activity coefficient (order of 1019) of BTx in bulk seawater using the inorganic thermodynamic model indicates very poor solubility of BTx in seawater and supports its enrichment in ocean surfaces and SSA. Examining the enrichment factors of BTx and organic matter in SSA contributes to our comprehension of the potential respiratory challenges posed by inhaled algal aerosols during red tide occurrences. In addition, enriched BTx in the uppermost layer of the ocean during red tide blooms can adversely influence animals that inhabit in tide flats with neurological and respiratory impacts. 
    more » « less
  4. Abstract Ocean waves transfer sea spray aerosol (SSA) to the atmosphere, and these SSA particles can be enriched in organic matter relative to salts compared to seawater ratios. A fundamental understanding of the factors controlling the transfer of biogenic organic matter from the ocean to the atmosphere remains elusive. Field studies that focus on understanding the connection between organic species in seawater and SSA are complicated by the numerous processes and sources affecting the composition of aerosols in the marine environment. Here, an isolated ocean–atmosphere system enables direct measurements of the sea–air transfer of different classes of biogenic organic matter over the course of two phytoplankton blooms. By measuring excitation–emission matrices of bulk seawater, the sea surface microlayer, and SSA, we investigate time series of the transfer of fluorescent species including chlorophyll-a, protein-like substances, and humic-like substances. Herein, we show the emergence of different molecular classes in SSA at specific times over the course of a phytoplankton bloom, suggesting that SSA chemical composition changes over time in response to changing ocean biological conditions. We compare the temporal behaviors for the transfer of each component, and discuss the factors contributing to differences in transfer between phases. 
    more » « less
  5. Abstract. Sea salt aerosols play an important role in the radiationbudget and atmospheric composition over the Arctic, where the climate israpidly changing. Previous observational studies have shown that Arctic sea ice leads are an important source of sea salt aerosols, and modeling efforts have also proposed blowing snow sublimation as a source. In this study,size-resolved atmospheric particle number concentrations and chemicalcomposition were measured at the Arctic coastal tundra site ofUtqiaġvik, Alaska, during spring (3 April–7 May 2016). Blowing snow conditions were observed during 25 % of the 5-week study period andwere overpredicted by a commonly used blowing snow parameterization based solely on wind speed and temperature. Throughout the study, open leads werepresent locally. During periods when blowing snow was observed, significantincreases in the number concentrations of 0.01–0.06 µm particles(factor of 6, on average) and 0.06–0.3 µm particles (67 %, on average) and a significant decrease (82 %, on average) in 1–4 µmparticles were observed compared to low wind speed periods. These size distribution changes were likely caused by the generation of ultrafineparticles from leads and/or blowing snow, with scavenging of supermicronparticles by blowing snow. At elevated wind speeds, both submicron andsupermicron sodium and chloride mass concentrations were enhanced,consistent with wind-dependent local sea salt aerosol production. Atmoderate wind speeds below the threshold for blowing snow as well as during observed blowing snow, individual sea spray aerosol particles were measured.These individual salt particles were enriched in calcium relative to sodiumin seawater due to the binding of this divalent cation with organic matter in the sea surface microlayer and subsequent enrichment during seawaterbubble bursting. The chemical composition of the surface snowpack alsoshowed contributions from sea spray aerosol deposition. Overall, theseresults show the contribution of sea spray aerosol production from leads onboth aerosols and the surface snowpack. Therefore, if blowing snowsublimation contributed to the observed sea salt aerosol, the snow beingsublimated would have been impacted by sea spray aerosol deposition rather than upward brine migration through the snowpack. Sea spray aerosol production from leads is expected to increase, with thinning and fracturingof sea ice in the rapidly warming Arctic. 
    more » « less