skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Current and Future γ-Ray Searches for Dark Matter Annihilation Beyond the Unitarity Limit
Abstract For decades, searches for electroweak-scale dark matter (DM) have been performed without a definitive detection. This lack of success may hint that DM searches have focused on the wrong mass range. A proposed candidate beyond the canonical parameter space is ultraheavy DM (UHDM). In this work, we consider indirect UHDM annihilation searches for masses between 30 TeV and 30 PeV—extending well beyond the unitarity limit at ∼100 TeV—and discuss the basic requirements for DM models in this regime. We explore the feasibility of detecting the annihilation signature, and the expected reach for UHDM with current and future very-high-energy (VHE; >100 GeV) γ -ray observatories. Specifically, we focus on three reference instruments: two Imaging Atmospheric Cherenkov Telescope arrays, modeled on VERITAS and CTA-North, and one extended air shower array, motivated by HAWC. With reasonable assumptions on the instrument response functions and background rate, we find a set of UHDM parameters (mass and cross section) for which a γ -ray signature can be detected by the aforementioned observatories. We further compute the expected upper limits for each experiment. With realistic exposure times, the three instruments can probe DM across a wide mass range. At the lower end, it can still have a point-like cross section, while at higher masses the DM could have a geometric cross section, indicative of compositeness.  more » « less
Award ID(s):
2011759
PAR ID:
10437832
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
938
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV ≲ M χ ≲ 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultraheavy dark matter (UHDM; M χ ≳ 100 TeV) has been suggested as an underexplored alternative to the WIMP paradigm, we search for an indirect dark matter annihilation signal in a higher mass range (up to 30 PeV) with the VERITAS γ -ray observatory. With 216 hr of observations of four dwarf spheroidal galaxies, we perform an unbinned likelihood analysis. We find no evidence of a γ -ray signal from UHDM annihilation above the background fluctuation for any individual dwarf galaxy nor for a joint-fit analysis, and consequently constrain the velocity-weighted annihilation cross section of UHDM for dark matter particle masses between 1 TeV and 30 PeV. We additionally set constraints on the allowed radius of a composite UHDM particle. 
    more » « less
  2. Abstract We present the results of dark matter (DM) searches in a sample of 31 dwarf irregular (dIrr) galaxies within the field of view of the HAWC Observatory. dIrr galaxies are DM-dominated objects in which astrophysical gamma-ray emission is estimated to be negligible with respect to the secondary gamma-ray flux expected by annihilation or decay of weakly interacting massive particles (WIMPs). While we do not see any statistically significant DM signal in dIrr galaxies, we present the exclusion limits (95% C.L.) for annihilation cross section and decay lifetime for WIMP candidates with masses between 1 and 100 TeV. Exclusion limits from dIrr galaxies are relevant and complementary to benchmark dwarf Spheroidal (dSph) galaxies. In fact, dIrr galaxies are targets kinematically different from benchmark dSph, preserving the footprints of different evolution histories. We compare the limits from dIrr galaxies to those from ultrafaint and classical dSph galaxies previously observed with HAWC. We find that the constraints are comparable to the limits from classical dSph galaxies and ∼2 orders of magnitude weaker than the ultrafaint dSph limits. 
    more » « less
  3. Abstract Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster's formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay atγ-ray energies and are predicted to be sources of large-scaleγ-ray emission due to hadronic interactions in the intracluster medium (ICM).In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuseγ-ray emission from the Perseus galaxy cluster.We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed.In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratioX500within the characteristic radiusR500down to aboutX500< 3 × 10-3, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp= 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRpdown to about ΔαCRp≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-basedγ-ray DM limits from clusters observations on the velocity-averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models withτχ> 1027s for DM masses above 1 TeV.These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario. 
    more » « less
  4. ABSTRACT Reticulum II (Ret II) is a satellite galaxy of the Milky Way (MW) and presents a prime target to investigate the nature of dark matter (DM) because of its high mass-to-light ratio. We evaluate a dedicated INTEGRAL observation campaign data set to obtain γ-ray fluxes from Ret II and compare those with expectations from DM. Ret II is not detected in the γ-ray band 25–8000 keV, and we derive a flux limit of $${\lesssim}10^{-8}\, \mathrm{erg\, cm^{-2}\, s^{-1}}$$. The previously reported 511 keV line is not seen, and we find a flux limit of $${\lesssim}1.7 \times 10^{-4}\, \mathrm{ph\, cm^{-2}\, s^{-1}}$$. We construct spectral models for primordial black hole (PBH) evaporation and annihilation/decay of particle DM, and subsequent annihilation of e+s produced in these processes. We exclude that the totality of DM in Ret II is made of a monochromatic distribution of PBHs of masses $${\lesssim}8 \times 10^{15}\, \mathrm{g}$$. Our limits on the velocity-averaged DM annihilation cross section into e+e− are $$\langle \sigma v \rangle \lesssim 5 \times 10^{-28} \left(m_{\rm DM} / \mathrm{MeV} \right)^{2.5}\, \mathrm{cm^3\, s^{-1}}$$. We conclude that analysing isolated targets in the MeV γ-ray band can set strong bounds on DM properties without multi-year data sets of the entire MW, and encourage follow-up observations of Ret II and other dwarf galaxies. 
    more » « less
  5. Abstract This paper presents a measurement of the electroweak production of two jets in association with a $$Z\gamma $$ Z γ pair, with the Z boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125  $$\text {GeV}$$ GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton–proton collisions at $$\sqrt{s}$$ s = 13  $$\text {TeV}$$ TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . The event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $$Z\gamma $$ Z γ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is $$1.31\pm 0.29$$ 1.31 ± 0.29  fb. An observed (expected) upper limit of 0.37 ( $$0.34^{+0.15}_{-0.10}$$ 0 . 34 - 0.10 + 0.15 ) at 95% confidence level is set on the branching ratio of a 125  $$\text {GeV}$$ GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ( $$0.017^{+0.007}_{-0.005}$$ 0 . 017 - 0.005 + 0.007 ), assuming the Standard Model production cross-section for a 125  $$\text {GeV}$$ GeV Higgs boson. 
    more » « less