skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reliable Spanners for Metric Spaces
A spanner is reliable if it can withstand large, catastrophic failures in the network. More precisely, any failure of some nodes can only cause a small damage in the remaining graph in terms of the dilation. In other words, the spanner property is maintained for almost all nodes in the residual graph. Constructions of reliable spanners of near linear size are known in the low-dimensional Euclidean settings. Here, we present new constructions of reliable spanners for planar graphs, trees, and (general) metric spaces.  more » « less
Award ID(s):
1907400
PAR ID:
10438520
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Algorithms
Volume:
19
Issue:
1
ISSN:
1549-6325
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grandoni, Fabrizio; Herman, Grzegorz; Sanders, Peter (Ed.)
    Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted from the network. In case of failures, some of the remaining vertices of a reliable spanner may no longer admit the spanner property, but this collateral damage is bounded by a fraction of the size of the attack. It is known that Ω(nlog n) edges are needed to achieve this strong property, where n is the number of vertices in the network, even in one dimension. Constructions of reliable geometric (1+ε)-spanners, for n points in ℝ^d, are known, where the resulting graph has 𝒪(n log n log log⁶n) edges. Here, we show randomized constructions of smaller size spanners that have the desired reliability property in expectation or with good probability. The new construction is simple, and potentially practical - replacing a hierarchical usage of expanders (which renders the previous constructions impractical) by a simple skip list like construction. This results in a 1-spanner, on the line, that has linear number of edges. Using this, we present a construction of a reliable spanner in ℝ^d with 𝒪(n log log²n log log log n) edges. 
    more » « less
  2. A spanner of a graph G is a subgraph H that approximately preserves shortest path distances in G. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured multiplicatively. In this work, we investigate whether one can similarly extend constructions of spanners with purely additive error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which lets us prove direct extensions of classic +2 and +4 unweighted spanners (both all-pairs and pairwise) to +2W and +4W weighted spanners, where W is the maximum edge weight. Specifically, we show that a weighted graph G contains all-pairs (pairwise) +2W and +4W weighted spanners of size O(n3/2) and O(n7/5) (O(np1/3) and O(np2/7)) respectively. For a technical reason, the +6 unweighted spanner becomes a +8W weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that G contains all-pairs (pairwise) +8W weighted spanners of size O(n4/3) (O(np1/4)). 
    more » « less
  3. A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances in the input graph up to a small multiplicative stretch. The common objective in the computation of spanners is to achieve the best-known existential size-stretch trade-off efficiently. Classical models and algorithmic analysis of graph spanners essentially assume that the algorithm can read the input graph, construct the desired spanner, and write the answer to the output tape. However, when considering massive graphs containing millions or even billions of nodes not only the input graph, but also the output spanner might be too large for a single processor to store. To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for graph spanners in general graphs, where the algorithm should locally decide whether a given edge (u,v)∈E belongs to the output spanner. Such LCAs give the user the `illusion' that a specific sparse spanner for the graph is maintained, without ever fully computing it. We present the following results: -For general n-vertex graphs and r∈{2,3}, there exists an LCA for (2r−1)-spanners with O˜(n1+1/r) edges and sublinear probe complexity of O˜(n1−1/2r). These size/stretch tradeoffs are best possible (up to polylogarithmic factors). -For every k≥1 and n-vertex graph with maximum degree Δ, there exists an LCA for O(k2) spanners with O˜(n1+1/k) edges, probe complexity of O˜(Δ4n2/3), and random seed of size polylog(n). This improves upon, and extends the work of [Lenzen-Levi, 2018]. We also complement our results by providing a polynomial lower bound on the probe complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse connected subgraph with o(m) edges. 
    more » « less
  4. Chambers, Erin W.; Gudmundsson, Joachim (Ed.)
    In SoCG 2022, Conroy and Tóth presented several constructions of sparse, low-hop spanners in geometric intersection graphs, including an O(nlog n)-size 3-hop spanner for n disks (or fat convex objects) in the plane, and an O(nlog² n)-size 3-hop spanner for n axis-aligned rectangles in the plane. Their work left open two major questions: (i) can the size be made closer to linear by allowing larger constant stretch? and (ii) can near-linear size be achieved for more general classes of intersection graphs? We address both questions simultaneously, by presenting new constructions of constant-hop spanners that have almost linear size and that hold for a much larger class of intersection graphs. More precisely, we prove the existence of an O(1)-hop spanner for arbitrary string graphs with O(nα_k(n)) size for any constant k, where α_k(n) denotes the k-th function in the inverse Ackermann hierarchy. We similarly prove the existence of an O(1)-hop spanner for intersection graphs of d-dimensional fat objects with O(nα_k(n)) size for any constant k and d. We also improve on some of Conroy and Tóth’s specific previous results, in either the number of hops or the size: we describe an O(nlog n)-size 2-hop spanner for disks (or more generally objects with linear union complexity) in the plane, and an O(nlog n)-size 3-hop spanner for axis-aligned rectangles in the plane. Our proofs are all simple, using separator theorems, recursion, shifted quadtrees, and shallow cuttings. 
    more » « less
  5. Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)
    There has recently been significant interest in fault tolerant spanners, which are spanners that still maintain their stretch guarantees after some nodes or edges fail. This work has culminated in an almost complete understanding of the three-way tradeoff between stretch, sparsity, and number of faults tolerated. However, despite some progress in metric settings, there have been no results to date on the tradeoff in general graphs between stretch, lightness, and number of faults tolerated. We initiate the study of light edge fault tolerant (EFT) graph spanners, obtaining the first such results. First, we observe that lightness can be unbounded if we use the traditional definition (normalizing by the MST). We then argue that a natural definition of fault-tolerant lightness is to instead normalize by a min-weight fault tolerant connectivity preserver; essentially, a fault-tolerant version of the MST. However, even with this, we show that it is still not generally possible to construct f-EFT spanners whose weight compares reasonably to the weight of a min-weight f-EFT connectivity preserver. In light of this lower bound, it is natural to then consider bicriteria notions of lightness, where we compare the weight of an f-EFT spanner to a min-weight (f' > f)-EFT connectivity preserver. The most interesting question is to determine the minimum value of f' that allows for reasonable lightness upper bounds. Our main result is a precise answer to this question: f' = 2f. In particular, we show that the lightness can be untenably large (roughly n/k for a k-spanner) if one normalizes by the min-weight (2f-1)-EFT connectivity preserver. But if one normalizes by the min-weight 2f-EFT connectivity preserver, then we show that the lightness is bounded by just O(f^{1/2}) times the non-fault tolerant lightness (roughly n^{1/k} for a (1+ε)(2k-1)-spanner). 
    more » « less