skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying baseline costs and cataloging potential optimization strategies for kelp aquaculture carbon dioxide removal
To keep global surface warming below 1.5°C by 2100, the portfolio of cost-effective CDR technologies must expand. To evaluate the potential of macroalgae CDR, we developed a kelp aquaculture bio-techno-economic model in which large quantities of kelp would be farmed at an offshore site, transported to a deep water “sink site”, and then deposited below the sequestration horizon (1,000 m). We estimated the costs and associated emissions of nursery production, permitting, farm construction, ocean cultivation, biomass transport, and Monitoring, Reporting, and Verification (MRV) for a 1,000 acre (405 ha) “baseline” project located in the Gulf of Maine, USA. The baseline kelp CDR model applies current systems of kelp cultivation to deep water (100 m) exposed sites using best available modeling methods. We calculated the levelized unit costs of CO 2 eq sequestration (LCOC; $ tCO 2 eq -1 ). Under baseline assumptions, LCOC was $17,048 tCO 2 eq -1 . Despite annually sequestering 628 tCO 2 eq within kelp biomass at the sink site, the project was only able to net 244 C credits (tCO 2 eq) each year, a true sequestration “additionality” rate (AR) of 39% (i.e., the ratio of net C credits produced to gross C sequestered within kelp biomass). As a result of optimizing 18 key parameters for which we identified a range within the literature, LCOC fell to $1,257 tCO 2 eq -1 and AR increased to 91%, demonstrating that substantial cost reductions could be achieved through process improvement and decarbonization of production supply chains. Kelp CDR may be limited by high production costs and energy intensive operations, as well as MRV uncertainty. To resolve these challenges, R&D must (1) de-risk farm designs that maximize lease space, (2) automate the seeding and harvest processes, (3) leverage selective breeding to increase yields, (4) assess the cost-benefit of gametophyte nursery culture as both a platform for selective breeding and driver of operating cost reductions, (5) decarbonize equipment supply chains, energy usage, and ocean cultivation by sourcing electricity from renewables and employing low GHG impact materials with long lifespans, and (6) develop low-cost and accurate MRV techniques for ocean-based CDR.  more » « less
Award ID(s):
2018851
PAR ID:
10438576
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oschlies, Andreas (Ed.)
    Abstract. Monitoring, reporting, and verification (MRV) refers to the multistep process of monitoring the amount of greenhouse gas removed by a carbon dioxide removal (CDR) activity and reporting the results of the monitoring to a third party. The third party then verifies the reporting of the results. While MRV is usually conducted in pursuit of certification in a voluntary or regulated CDR market, this chapter focuses on key recommendations for MRV relevant to ocean alkalinity enhancement (OAE) research. Early stage MRV for OAE research may become the foundation on which markets are built. Therefore, such research carries a special obligation toward comprehensiveness, reproducibility, and transparency. Observational approaches during field trials should aim to quantify the delivery of alkalinity to seawater and monitor for secondary precipitation, biotic calcification, and other ecosystem changes that can feed back on sources or sinks of greenhouse gases where alkalinity is measurably elevated. Observations of resultant shifts in the partial pressure of CO2 (pCO2) and ocean pH can help determine the efficacy of OAE and are amenable to autonomous monitoring. However, because the ocean is turbulent and energetic and CO2 equilibration between the ocean and atmosphere can take several months or longer, added alkalinity will be diluted to perturbation levels undetectable above background variability on timescales relevant for MRV. Therefore, comprehensive quantification of carbon removal via OAE will be impossible through observational methods alone, and numerical simulations will be required. The development of fit-for-purpose models, carefully validated against observational data, will be a critical part of MRV for OAE. 
    more » « less
  2. Abstract Contemporary food and agricultural systems degrade soils, pollute natural resources, and contribute to greenhouse gas emissions. The waste output from these systems, however, can be repurposed as an agricultural input, reducing emissions associated with organics disposal while actively sequestering atmospheric carbon in soils—thus transitioning the sector from a carbon source to a carbon sink. This research estimates the near-term technical and economic potential of utilizing composted organic feedstocks as a soil amendment to mitigate climate change and improve long-term soil quality, in line with California’s organics diversion policies, by connecting food scraps and organics residuals in California’s municipal solid waste to existing infrastructure and working lands in the state. The multi-objective spatial optimization results indicate considerable carbon sequestration benefits in the range of −1.9 ± 0.5 MMT CO2eq annually, by applying compost to 6 million hectares of California rangelands at a price of approximately $200 per ton, presenting a cost-effective climate change mitigation strategy within proposed federal sequestration credits. Expanding composting capacity is predicted to increase the total amount of carbon sequestered while reducing the cost per ton and per hectare treated. This model aids decision makers in considering the technical, economic, and institutional potential of actively managing the State’s organic materials in municipal waste streams for climate change mitigation. 
    more » « less
  3. While the number of kelp farms have steadily increased, few have been deployed with sensors to measure mooring tensions with substantial biomass. During the kelp farming season of 2018–2019 in Saco Bay, Maine USA, a field study was conducted to assess mooring loads due to environmental conditions and kelp growth. The effort included the deployment of a farm with a 122 m cultivation line and spread mooring with rope, chain, and anchors in 15.2 m of water. The system was deployed with seeded twine in late November and harvested in May. In April, with kelp biomass estimated at 7.8 kg m −1 , two load cells were installed to measure mooring tensions in response to currents and waves. The currents and waves were measured with two Acoustic Doppler Current Profilers deployed adjacent to the load cells. From these measurements, we characterized the maximum loading case in response to a complex hydrodynamic environment. The maximum tension occurred on the landward side of the farm even though wave exposure was seaward. The tension in the landward side mooring was dominated by steady drag from the currents going to the east southeast. During this event, the two profilers were positioned on the leading and trailing edges of the farm relative to the prevailing current direction. Velocities measured at 0.5 m bins showed a 26.7% reduction at the depths where the kelp was located. To analyze the dynamic portion of the load cell datasets, the oscillatory components were processed into energy density spectra. Results showed that mooring tensions were not affected by waves at frequencies greater than 0.175 Hz, with most of the energy occurring near 0.12 Hz. The tension spectra did reveal energy at frequencies between 0.0075 and 0.01 Hz, indicating a low frequency response, possibly due to nonuniform velocity profiles inducing vertical motion of the cultivation line. It was also observed that the landward mooring, subjected to higher currents, was more sensitive to oscillating loads than the slack seaward side. The high-fidelity dataset will be useful for numerical modeling validation to further understand these dynamics and to optimize kelp farm designs. 
    more » « less
  4. Abstract Ocean-based carbon dioxide (CO 2 ) removal (CDR) strategies are an important part of the portfolio of approaches needed to achieve negative greenhouse gas emissions. Many ocean-based CDR strategies rely on injecting CO 2 or organic carbon (that will eventually become CO 2 ) into the ocean interior, or enhancing the ocean’s biological pump. These approaches will not result in permanent sequestration, because ocean currents will eventually return the injected CO 2 back to the surface, where it will be brought into equilibrium with the atmosphere. Here, a model of steady state global ocean circulation and mixing is used to assess the time scales over which CO 2 injected in the ocean interior remains sequestered from the atmosphere. There will be a distribution of sequestration times for any single discharge location due to the infinite number of pathways connecting a location at depth with the sea surface. The resulting probability distribution is highly skewed with a long tail of very long transit times, making mean sequestration times much longer than typical time scales. Deeper discharge locations will sequester purposefully injected CO 2 much longer than shallower ones and median sequestration times are typically decades to centuries, and approach 1000 years in the deep North Pacific. Large differences in sequestration times occur both within and between the major ocean basins, with the Pacific and Indian basins generally having longer sequestration times than the Atlantic and Southern Oceans. Assessments made over a 50 year time horizon illustrates that most of the injected carbon will be retained for injection depths greater than 1000 m, with several geographic exceptions such as the Western North Atlantic. Ocean CDR strategies that increase upper ocean ecosystem productivity with the goal of exporting more carbon to depth will have mainly a short-term influence on atmospheric CO 2 levels because ∼70% will be transported back to the surface ocean within 50 years. The results presented here will help plan appropriate ocean CDR strategies that can help limit climate damage caused by fossil fuel CO 2 emissions. 
    more » « less
  5. Production rates reported for canopy‐forming kelps have highlighted the potential contributions of these foundational macroalgal species to carbon cycling and sequestration on a globally relevant scale. Yet, the production dynamics of many kelp species remain poorly resolved. For example, productivity estimates for the widely distributed giant kelpMacrocystis pyriferaare based on a few studies from the center of this species' range. To address this geospatial bias, we surveyed giant kelp beds in their high latitude fringe habitat in southeast Alaska to quantify foliar standing crop, growth and loss rates, and productivity ofM. pyriferaand co‐occurring understory kelpsHedophyllum nigripesandNeoagarum fimbriatum. We found that giant kelp beds at the poleward edge of their range produce ~150 g C · m−2· year−1from a standing biomass that turns over an estimated 2.1 times per year, substantially lower rates than have been observed at lower latitudes. Although the productivity of high latitudeM. pyriferadwarfs production by associated understory kelps in both winter and summer seasons, phenological differences in growth and relative carbon and nitrogen content among the three kelp species suggests their complementary value as nutritional resources to consumers. This work represents the highest latitude consideration ofM. pyriferaforest production to date, providing a valuable quantification of kelp carbon cycling in this highly seasonal environment. 
    more » « less