skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reversible total ionizing dose effects in NiO/Ga2O3 heterojunction rectifiers
NiO/Ga2O3 heterojunction rectifiers were exposed to 1 Mrad fluences of Co-60 γ-rays either with or without reverse biases. While there is a small component of Compton electrons (600 keV), generated via the interaction of 1.17 and 1.33 MeV gamma photons with the semiconductor, which in turn can lead to displacement damage, most of the energy is lost to ionization. The effect of the exposure to radiation is a 1000× reduction in forward current and a 100× increase in reverse current in the rectifiers, which is independent of whether the devices were biased during this step. The on–off ratio is also reduced by almost five orders of magnitude. There is a slight reduction in carrier concentration in the Ga2O3 drift region, with an effective carrier removal rate of <4 cm−1. The changes in electrical characteristics are reversible by application of short forward current pulses during repeated measurement of the current–voltage characteristics at room temperature. There are no permanent total ionizing dose effects present in the rectifiers to 1 Mad fluences, which along with their resistance to displacement damage effects indicate that these devices may be well-suited to harsh terrestrial and space radiation applications if appropriate bias sequences are implemented to reverse the radiation-induced changes.  more » « less
Award ID(s):
1856662 2015795
PAR ID:
10440381
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
133
Issue:
1
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 17 MeV proton irradiation at fluences from 3–7 × 1013cm−2of vertical geometry NiO/β-Ga2O3heterojunction rectifiers produced carrier removal rates in the range 120–150 cm−1in the drift region. The forward current density decreased by up to 2 orders of magnitude for the highest fluence, while the reverse leakage current increased by a factor of ∼20. Low-temperature annealing methods are of interest for mitigating radiation damage in such devices where thermal annealing is not feasible at the temperatures needed to remove defects. While thermal annealing has previously been shown to produce a limited recovery of the damage under these conditions, athermal annealing by minority carrier injection from NiO into the Ga2O3has not previously been attempted. Forward bias annealing produced an increase in forward current and a partial recovery of the proton-induced damage. Since the minority carrier diffusion length is 150–200 nm in proton irradiated Ga2O3, recombination-enhanced annealing of point defects cannot be the mechanism for this recovery, and we suggest that electron wind force annealing occurs. 
    more » « less
  2. The effect of doping in the drift layer and the thickness and extent of extension beyond the cathode contact of a NiO bilayer in vertical NiO/β-Ga2O3 rectifiers is reported. Decreasing the drift layer doping from 8 × 1015 to 6.7 × 1015 cm−3 produced an increase in reverse breakdown voltage (VB) from 7.7 to 8.9 kV, the highest reported to date for small diameter devices (100 μm). Increasing the bottom NiO layer from 10 to 20 nm did not affect the forward current–voltage characteristics but did reduce reverse leakage current for wider guard rings and reduced the reverse recovery switching time. The NiO extension beyond the cathode metal to form guard rings had only a slight effect (∼5%) in reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge improvement in VB compared to conventional Schottky rectifiers, where the breakdown voltage was ∼1 kV. The on-state resistance (RON) was increased from 7.1 m Ω cm2 in Schottky rectifiers fabricated on the same wafer to 7.9 m Ω cm2 in heterojunctions. The maximum power figure of merit (VB)2/RON was 10.2 GW cm−2 for the 100 μm NiO/Ga2O3 devices. We also fabricated large area (1 mm2) devices on the same wafer, achieving VB of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW  cm−2 for these devices. These parameters are the highest reported for large area Ga2O3 rectifiers. Both the small area and large area devices have performance exceeding the unipolar power device performance of both SiC and GaN. 
    more » « less
  3. Gallium oxide (Ga2O3) exists in different polymorphic forms, including the trigonal (α), monoclinic (β), cubic (γ), and orthorhombic (κ) phases, each exhibiting distinct structural and electronic properties. Among these, β-Ga2O3 is the most thermodynamically stable and widely studied for high-power electronics applications due to its ability to be grown as high-quality bulk crystals. However, metastable phases such as α-, γ-, and κ-Ga2O3 offer unique properties, including wider bandgap or strong polarization and ferroelectric characteristics, making them attractive for specialized applications. This paper summarizes the radiation hardness of these polymorphs by analyzing the reported changes in minority carrier diffusion length (LD) and carrier removal rates under various irradiation conditions, including protons, neutrons, alpha particles, and gamma rays. β-Ga2O3 demonstrates high radiation tolerance with LD reductions correlated to the introduction of electron traps (E2*, E3, and E4) and gallium–oxygen vacancy complexes (VGa–VO). α-Ga2O3 exhibits slightly better radiation hardness similar to κ-Ga2O3, which also shows minimal LD changes postirradiation, likely due to suppressed defect migration. γ-Ga2O3 is the least thermodynamically stable, but surprisingly is not susceptible to radiation-induced damage, and is stabilized under Ga-deficient conditions. The study highlights the role of polymorph-specific defect dynamics, doping concentrations, and nonuniform electrical properties in determining radiation hardness. We also discuss the effect of radiation exposure on the use of NiO/Ga2O3 heterojunction rectifiers that provide superior electrical performance relative to Schottky rectifiers. The presence of NiO does change some aspects of the response to radiation. Alloying with Al2O3 further modulates the bandgap of Ga2O3 and defect behavior, offering potentially tunable radiation tolerance. These findings provide critical insights into the radiation response of Ga2O3 polymorphs, with implications for their use in aerospace and radiation-hardened power electronics. Future research should focus on direct comparisons of polymorphs under identical irradiation conditions, defect identification, and annealing strategies to enhance radiation tolerance. 
    more » « less
  4. A systematic investigation of the electrical characteristics of β-Ga2O3 Schottky barrier diodes (SBDs) has been conducted under high-dose 60Co gamma radiation, with total cumulative doses reaching up to 5 Mrad (Si). Initial exposure of the diodes to 1 Mrad resulted in a significant decrease in on-current and an increase in on-resistance compared to the pre-radiation condition, likely due to the generation of radiation-induced deep-level acceptor traps. However, upon exposure to higher gamma radiation doses of 3 and 5 Mrad, a partial recovery of the device performance occurred, attributed to a radiation annealing effect. Capacitance–voltage (C–V) measurements showed a decrease in net carrier concentration in the β-Ga2O3 drift layer, from ∼3.20 × 1016 to ∼3.05 × 1016 cm−3, after 5 Mrad irradiation. Temperature-dependent I–V characteristics showed that 5 Mrad irradiation leads to a reduction in both forward and reverse currents across all investigated temperatures ranging from 25 to 250 °C, accompanied by slight increases in on-resistance, ideality factors, and Schottky barrier heights. Additionally, a slight increase in reverse breakdown voltage was observed post-radiation. Overall, β-Ga2O3 SBDs exhibit high resilience to gamma irradiation, with performance degradation mitigated by radiation-induced self-recovery, highlighting its potential for radiation-hardened electronic applications in extreme environment. 
    more » « less
  5. We present a review of the published experimental and simulation radiation damage results in Ga 2 O 3 . All of the polytypes of Ga 2 O 3 are expected to show similar radiation resistance as GaN and SiC, considering their average bond strengths. However, this is not enough to explain the orders of magnitude difference of the relative resistance to radiation damage of these materials compared to GaAs and dynamic annealing of defects is much more effective in Ga 2 O 3 . It is important to examine the effect of all types of radiation, given that Ga 2 O 3 devices will potentially be deployed both in space and terrestrial applications. Octahedral gallium monovacancies are the main defects produced under most radiation conditions because of the larger cross-section for interaction compared to oxygen vacancies. Proton irradiation introduces two main paramagnetic defects in Ga 2 O 3 , which are stable at room temperature. Charge carrier removal can be explained by Fermi-level pinning far from the conduction band minimum due to gallium interstitials (Ga i ), vacancies (V Ga ), and antisites (Ga O ). One of the most important parameters to establish is the carrier removal rate for each type of radiation, since this directly impacts the current in devices such as transistors or rectifiers. When compared to the displacement damage predicted by the Stopping and Range of Ions in Matter(SRIM) code, the carrier removal rates are generally much lower and take into account the electrical nature of the defects created. With few experimental or simulation studies on single event effects (SEE) in Ga 2 O 3 , it is apparent that while other wide bandgap semiconductors like SiC and GaN are robust against displacement damage and total ionizing dose, they display significant vulnerability to single event effects at high Linear Energy Transfer (LET) and at much lower biases than expected. We have analyzed the transient response of β -Ga 2 O 3 rectifiers to heavy-ion strikes via TCAD simulations. Using field metal rings improves the breakdown voltage and biasing those rings can help control the breakdown voltage. Such biased rings help in the removal of the charge deposited by the ion strike. 
    more » « less