skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Reversible total ionizing dose effects in NiO/Ga2O3 heterojunction rectifiers

NiO/Ga2O3 heterojunction rectifiers were exposed to 1 Mrad fluences of Co-60 γ-rays either with or without reverse biases. While there is a small component of Compton electrons (600 keV), generated via the interaction of 1.17 and 1.33 MeV gamma photons with the semiconductor, which in turn can lead to displacement damage, most of the energy is lost to ionization. The effect of the exposure to radiation is a 1000× reduction in forward current and a 100× increase in reverse current in the rectifiers, which is independent of whether the devices were biased during this step. The on–off ratio is also reduced by almost five orders of magnitude. There is a slight reduction in carrier concentration in the Ga2O3 drift region, with an effective carrier removal rate of <4 cm−1. The changes in electrical characteristics are reversible by application of short forward current pulses during repeated measurement of the current–voltage characteristics at room temperature. There are no permanent total ionizing dose effects present in the rectifiers to 1 Mad fluences, which along with their resistance to displacement damage effects indicate that these devices may be well-suited to harsh terrestrial and space radiation applications if appropriate bias sequences are implemented to reverse the radiation-induced changes.

 
more » « less
Award ID(s):
1856662 2015795
PAR ID:
10440381
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
133
Issue:
1
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of doping in the drift layer and the thickness and extent of extension beyond the cathode contact of a NiO bilayer in vertical NiO/β-Ga2O3 rectifiers is reported. Decreasing the drift layer doping from 8 × 1015 to 6.7 × 1015 cm−3 produced an increase in reverse breakdown voltage (VB) from 7.7 to 8.9 kV, the highest reported to date for small diameter devices (100 μm). Increasing the bottom NiO layer from 10 to 20 nm did not affect the forward current–voltage characteristics but did reduce reverse leakage current for wider guard rings and reduced the reverse recovery switching time. The NiO extension beyond the cathode metal to form guard rings had only a slight effect (∼5%) in reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge improvement in VB compared to conventional Schottky rectifiers, where the breakdown voltage was ∼1 kV. The on-state resistance (RON) was increased from 7.1 m Ω cm2 in Schottky rectifiers fabricated on the same wafer to 7.9 m Ω cm2 in heterojunctions. The maximum power figure of merit (VB)2/RON was 10.2 GW cm−2 for the 100 μm NiO/Ga2O3 devices. We also fabricated large area (1 mm2) devices on the same wafer, achieving VB of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW  cm−2 for these devices. These parameters are the highest reported for large area Ga2O3 rectifiers. Both the small area and large area devices have performance exceeding the unipolar power device performance of both SiC and GaN. 
    more » « less
  2. A systematic investigation of the electrical characteristics of β-Ga2O3 Schottky barrier diodes (SBDs) has been conducted under high-dose 60Co gamma radiation, with total cumulative doses reaching up to 5 Mrad (Si). Initial exposure of the diodes to 1 Mrad resulted in a significant decrease in on-current and an increase in on-resistance compared to the pre-radiation condition, likely due to the generation of radiation-induced deep-level acceptor traps. However, upon exposure to higher gamma radiation doses of 3 and 5 Mrad, a partial recovery of the device performance occurred, attributed to a radiation annealing effect. Capacitance–voltage (C–V) measurements showed a decrease in net carrier concentration in the β-Ga2O3 drift layer, from ∼3.20 × 1016 to ∼3.05 × 1016 cm−3, after 5 Mrad irradiation. Temperature-dependent I–V characteristics showed that 5 Mrad irradiation leads to a reduction in both forward and reverse currents across all investigated temperatures ranging from 25 to 250 °C, accompanied by slight increases in on-resistance, ideality factors, and Schottky barrier heights. Additionally, a slight increase in reverse breakdown voltage was observed post-radiation. Overall, β-Ga2O3 SBDs exhibit high resilience to gamma irradiation, with performance degradation mitigated by radiation-induced self-recovery, highlighting its potential for radiation-hardened electronic applications in extreme environment.

     
    more » « less
  3. The characteristics of NiO/β-(Al0.21Ga0.79)2O3/Ga2O3 heterojunction lateral geometry rectifiers with the epitaxial layers grown by metal organic chemical vapor deposition were measured over a temperature range from 25 °C–225 °C. The forward current increased with temperature, while the on-state resistance decreased from 360 Ω.cm2at 25 °C to 30 Ω.cm2at 225 °C. The forward turn-on voltage was reduced from 4 V at 25 °C to 1.9 V at 225 °C. The reverse breakdown voltage at room temperature was ∼4.2 kV, with a temperature coefficient of −16.5 V K−1. This negative temperature coefficient precludes avalanche being the breakdown mechanism and indicates that defects still dominate the reverse conduction characteristics. The corresponding power figures-of-merit were 0.27–0.49 MW.cm−2. The maximum on/off ratios improved with temperature from 2105 at 25 °C to 3 × 107 at 225 °C when switching from 5 V forward to 0 V. The high temperature performance of the NiO/β-(Al0.21Ga0.79)2O3/Ga2O3 lateral rectifiers is promising if the current rate of optimization continues.

     
    more » « less
  4. The switching performance of unpackaged vertical geometry NiO/ β -Ga 2 O 3 rectifiers with a reverse breakdown voltage of 1.76 kV (0.1 cm diameter, 7.85 × 10 −3 cm 2 area) and an absolute forward current of 1.9 A fabricated on 20 μ m thick epitaxial β -Ga 2 O 3 drift layers and a double layer of NiO to optimize breakdown and contact resistance was measured with an inductive load test circuit. The Baliga figure-of-merit of the devices was 261 MW.cm −2 , with differential on-state resistance of 11.86 mΩ.cm 2 . The recovery characteristics for these rectifiers switching from forward current of 1 A to reverse off-state voltage of −550 V showed a measurement-parasitic-limited recovery time (t rr ) of 101 ns, with a peak current value of 1.4 A for switching from 640 V. The reverse recovery time was limited by extrinsic parasitic and thus does not represent the intrinsic device characteristics. There was no significant dependence of t rr on switching voltage or forward current. 
    more » « less
  5. The temperature-dependent behavior of on/off ratio and reverse recovery time in vertical heterojunction p-NiO/β n-Ga2O/n+ Ga2O3 rectifiers was investigated over the temperature range of 25–300 °C. The device characteristics in forward bias showed evidence of multiple current transport mechanisms and were found to be dependent on the applied bias voltages and temperatures. The on–off ratio decreased from 3 × 106 at 25 °C to 2.5 × 104 at 300 °C for switching to 100 V reverse bias. For 200 μm diameter rectifiers, the reverse recovery time of ∼21 ns was independent of temperature, with the Irr monotonically increasing from 15.1 mA at 25 °C to 25.6 mA at 250 °C and dropping at 300 °C. The dI/dt increased from 4.2 to 4.6 A/μs over this temperature range. The turn-on voltage decreased from 2.9 V at 25 °C to 1.7 V at 300 °C. The temperature coefficient of breakdown voltage was negative and does not support the presence of avalanche breakdown in NiO/β-Ga2O3 rectifiers. The energy loss during switching from 100 V was in the range 23–31 μJ over the temperature range investigated.

     
    more » « less