skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Partial degeneration of finite gap solutions to the Korteweg–de Vries equation: soliton gas and scattering on elliptic backgrounds
Abstract We obtain Fredholm type formulas for partial degenerations of theta functions on (irreducible) nodal curves of arbitrary genus, with emphasis on nodal curves of genus one. An application is the study of ‘many-soliton’ solutions on an elliptic (cnoidal) background standing wave for the Korteweg–de Vries (KdV) equation starting from a formula that is reminiscent of the classical Kay–Moses formula for N -solitons. In particular, we represent such a solution as a sum of the following two terms: a ‘shifted’ elliptic (cnoidal) background wave and a Kay–Moses type determinant containing Jacobi theta functions for the solitonic content, which can be viewed as a collection of solitary disturbances on the cnoidal background. The expressions for the travelling (group) speed of these solitary disturbances, as well as for the interaction kernel describing the scattering of pairs of such solitary disturbances, are obtained explicitly in terms of Jacobi theta functions. We also show that genus N  + 1 finite gap solutions with random initial phases converge in probability to the deterministic cnoidal wave solution as N bands degenerate to a nodal curve of genus one. Finally, we derive the nonlinear dispersion relations and the equation of states for the KdV soliton gas on the residual elliptic background.  more » « less
Award ID(s):
2009647
PAR ID:
10440566
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nonlinearity
Volume:
36
Issue:
7
ISSN:
0951-7715
Page Range / eLocation ID:
3622 to 3660
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using the Darboux transformation for the Korteweg–de Vries equation, we construct and analyze exact solutions describing the interaction of a solitary wave and a traveling cnoidal wave. Due to their unsteady, wavepacket-like character, these wave patterns are referred to as breathers. Both elevation (bright) and depression (dark) breather solutions are obtained. The nonlinear dispersion relations demonstrate that the bright (dark) breathers propagate faster (slower) than the background cnoidal wave. Two-soliton solutions are obtained in the limit of degeneration of the cnoidal wave. In the small amplitude regime, the dark breathers are accurately approximated by dark soliton solutions of the nonlinear Schrödinger equation. These results provide insight into recent experiments on soliton-dispersive shock wave interactions and soliton gases. 
    more » « less
  2. Abstract

    We construct the multi‐breather solutions of the focusing nonlinear Schrödinger equation (NLSE) on the background of elliptic functions by the Darboux transformation, and express them in terms of the determinant of theta functions. The dynamics of the breathers in the presence of various kinds of backgrounds such as dn, cn, and nontrivial phase‐modulating elliptic solutions are presented, and their behaviors dependent on the effect of backgrounds are elucidated. We also determine the asymptotic behaviors for the multibreather solutions with different velocities in the limit, where the solution in the neighborhood of each breather tends to the simple one‐breather solution. Furthermore, we exactly solve the linearized NLSE using the squared eigenfunction and determine the unstable spectra for elliptic function background. By using them, the Akhmediev breathers arising from these modulational instabilities are plotted and their dynamics are revealed. Finally, we provide the rogue wave and higher order rogue wave solutions by taking the special limit of the breather solutions at branch points and the generalized Darboux transformation. The resulting dynamics of the rogue waves involves rich phenomena, depending on the choice of the background and possessing different velocities relative to the background. We also provide an example of the multi‐ and higher order rogue wave solution.

     
    more » « less
  3. In this paper we prove instability of the soliton for the focusing, mass-critical generalized KdV equation. We prove that the solution to the generalized KdV equation for any initial data with mass smaller than the mass of the soliton and close to the soliton in \begin{document}$ L^{2} $\end{document} norm must eventually move away from the soliton.

     
    more » « less
  4. Abstract

    This paper considers two-dimensional steady solitary waves with constant vorticity propagating under the influence of gravity over an impermeable flat bed. Unlike in previous works on solitary waves, we allow for both internal stagnation points and overhanging wave profiles. Using analytic global bifurcation theory, we construct continuous curves of large-amplitude solutions. Along these curves, either the wave amplitude approaches the maximum possible value, the dimensionless wave speed becomes unbounded, or a singularity develops in a conformal map describing the fluid domain. This is stronger than what one would expect from a straightforward generalization of existing results for periodic waves. We also show that an arbitrary solitary wave of elevation with constant vorticity must be supercritical. The existence proof relies on a novel reformulation of the problem as an elliptic system for two scalar functions in a fixed domain, one describing the conformal map of the fluid region and the other the flow beneath the wave.

     
    more » « less
  5. Abstract

    We consider large-scale dynamics of non-equilibrium dense soliton gas for the Korteweg–de Vries (KdV) equation in the special “condensate” limit. We prove that in this limit the integro-differential kinetic equation for the spectral density of states reduces to theN-phase KdV–Whitham modulation equations derived by Flaschka et al. (Commun Pure Appl Math 33(6):739–784, 1980) and Lax and Levermore (Commun Pure Appl Math 36(5):571–593, 1983). We consider Riemann problems for soliton condensates and construct explicit solutions of the kinetic equation describing generalized rarefaction and dispersive shock waves. We then present numerical results for “diluted” soliton condensates exhibiting rich incoherent behaviors associated with integrable turbulence.

     
    more » « less