skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Higher adherence to the Dietary Approaches to Stop Hypertension (DASH Diet) is associated with lower greenhouse gases and land use from protein foods
Introduction The average American diet is high in red and processed meats which increases one's risk for chronic diseases and requires more land and water to produce and yields greater greenhouse gases (GHG) compared to other protein foods. Reduction of red and processed meat intake, such as seen with the Dietary Approaches to Stop Hypertension (DASH diet), could benefit human and environmental health. Objective The objective of this study is to predict the environmental sustainability of the DASH diet by evaluating the GHG, land use, and water withdrawals from protein foods within the self-selected diets of people who were encouraged to follow the DASH diet. Methods Dietary data was collected from 380 Midwesterners aged 35-70 years old with hypertension using the Automated Self-Administered 24-Hour (ASA 24) Recall System. DASH diet adherence was measured using a nutrient-based DASH score. GHG, land use, and water withdrawals were obtained using Carnegie Mellon University's Economic Input-Output Life Cycle Assessment ( eiolca.net ) using the Purchaser model (cradle-to-consumer). Multiple linear regressions were used to view associations between individual DASH nutrient scores and environmental impacts of total, animal, and plant protein foods. Results Diets that met DASH diet guidelines, as indicated by higher individual DASH nutrient scores, were associated with less GHG and land use from total and animal protein foods but more GHG and land use from plant-protein foods, with a few exceptions. The pattern was not clear for water withdrawals. Diets with the greatest adherence had around 25–50% lower GHG and land use from total protein foods than diets with the lowest adherence. Changes may be due to decreased consumption of total and animal protein foods, selection of animal protein foods with lower environmental impacts, and increased consumption of plant protein foods. Conclusion Adhering to the DASH diet can promote the consumption of less environmentally demanding protein foods resulting in lower GHG and land use from protein foods. However, claims regarding the sustainability of the entire dietary pattern cannot be determined based off the current study. Regardless, it is evident that environmental impacts should be considered alongside health impacts when selecting, promoting, or recommending a dietary pattern.  more » « less
Award ID(s):
1828942
PAR ID:
10440912
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Sustainable Food Systems
Volume:
7
ISSN:
2571-581X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many Small Island Developing States (SIDS) are experiencing a nutrition transition, wherein high prevalence of malnutrition co-occurs with growing rates of diet-related non-communicable diseases. Sustainably managed and accessible aquatic foods can serve as a rich and bioavailable source of nutrients, helping communities achieve healthy diets and meet key sustainable development goals (e.g., SDG 1 No Poverty, SDG 2 Zero Hunger, and SDG 14 Life Below Water). However, to properly harness aquatic food systems in nutrition interventions, we must first understand aquatic food’s role in nutrient intake and adequacy. Here, using a nationally representative survey from Kiribati, we quantify the contribution of aquatic foods to nutrient intake and adequacy, and examine the spatial variability in nutrient intake adequacies. We find aquatic foods are the main contributors of most nutrients we examined, providing > 75% of vitamin B12, retinol, and heme iron, > 50% of niacin and total vitamin A, and > 25% of protein, vitamin E, potassium, and total iron consumed. Consumption of aquatic foods contributes to meeting key nutrient adequacies (e.g., niacin) and provides complete adequacy for vitamin B12 and protein. However, despite high aquatic food consumption, we find high levels of nutrient inadequacies (11 of the 17 nutrients with dietary reference intakes). Overall, our study quantifies the nutritional importance of aquatic foods in an emblematic SIDS, emphasizing their vulnerability to declining aquatic resources. We also highlight the need for cross-scale context-specific targeted nutrition interventions, even when aquatic food consumption is high, to enable SIDS to meet key SDGs. 
    more » « less
  2. Land-use change may drive viral spillover from bats into humans, partly through dietary shifts caused by decreased availability of native foods and increased availability of cultivated foods. We experimentally manipulated diets of Jamaican fruit bats to investigate whether diet influences viral shedding. To reflect dietary changes experienced by wild bats during periods of nutritional stress, Jamaican fruit bats were fed either a standard diet or a putative suboptimal diet, which was deprived of protein (suboptimal-sugar diet) and/or supplemented with fat (suboptimal-fat diet). Upon H18N11 influenza A-virus infection, bats fed on the suboptimal-sugar diet shed the most viral RNA for the longest period, but bats fed the suboptimal-fat diet shed the least viral RNA for the shortest period. Bats on both suboptimal diets ate more food than the standard diet, suggesting nutritional changes may alter foraging behaviour. This study serves as an initial step in understanding whether and how dietary shifts may influence viral dynamics in bats, which alters the risk of spillover to humans. 
    more » « less
  3. Abstract Meeting ambitious climate targets will require deploying the full suite of mitigation options, including those that indirectly reduce greenhouse-gas (GHG) emissions. Healthy diets have sustainability co-benefits by directly reducing livestock emissions as well as indirectly reducing land use emissions. Increased crop productivity could indirectly avoid emissions by reducing cropland area. However, there is disagreement on the sustainability of proposed healthy U.S. diets and a lack of clarity on how long-term sustainability benefits may change in response to shifts in the livestock sector. Here, we explore the GHG emissions impacts of seven scenarios that vary U.S. crop yields and healthier diets in the U.S. and overseas. We also examine how impacts vary across assumptions of future ruminant livestock productivity and ruminant stocking density in the U.S. We employ two complementary land use models—the US FABLE Calculator, an agricultural and forestry sector accounting model with high agricultural commodity representation, and GLOBIOM, a spatially explicit partial equilibrium optimization model for global land use systems. Results suggest that healthier U.S. diets that follow the Dietary Guidelines for Americans reduce agricultural and land use greenhouse gas emissions by 25–57% (approx 120–310 MtCO2e/y) and pastureland area by 28–38%. The potential emissions and land sparing benefits of U.S. agricultural productivity growth are modest within the U.S. due to the increasing comparative advantage of U.S. crops. Our findings suggest that healthy U.S. diets can significantly contribute toward meeting U.S. long-term climate goals for the land use sectors. 
    more » « less
  4. Abstract Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual‐level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the “opportunity cost” of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high‐quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck,Tragelaphus sylvaticus) in an African floodplain‐savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS‐collared animals (range 6–14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual‐level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity‐of‐use index), and had higher‐quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual‐level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes. 
    more » « less
  5. ABSTRACT Gaining a more complete understanding of a species' dietary variability is crucial to properly discern distribution, population growth trends, and conservation actions. Endangered mountain gorillas live in topographically complex forests covering a wide elevational range and diverse habitat matrices. Since 1967, mountain gorillas have been studied at high elevations in the southwest of the Volcanoes National Park (VNP) in Rwanda, where groups use different compositions of habitats and have been growing at higher rates than groups in the northeast VNP region, which is characterized by lower elevations. Building on previous efforts, we describe dietary variability among VNP mountain gorilla groups by integrating data from groups ranging in the northeast VNP. We assessed and compared nutritional components of key foods (making up 80% of the diet) to better understand whether variation in diet quality could be linked to within‐population growth differences. Feeding and ranging data were collected between November 2019 and December 2022, using long‐term monitoring data, group scans, and focal animal sampling. To compare diet quality, we combined nutritional values from newly collected food plants and previously collected and assessed food plant samples using comparable field and laboratory methods. We recorded 57 new foods for the study population. Groups in the southwest (N = 8) and the northeast (N = 4) regions of VNP used different vegetation zones, and there was high dietary variability with low diet overlap among these regions. Although northeast groups rely on more diverse diets, key foods (making up ~80% of the diet) had comparable nutrient concentrations to southwest groups. This suggests that diet quality is unlikely to be a main driver of observed heterogeneous population growth. For follow‐up research, we discuss alternative explanations linked to food distribution, biomass, and energy expenditure to access foods. Our findings add important information for future habitat suitability assessments essential for mountain gorilla conservation management and habitat restoration and expansion efforts. 
    more » « less