skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the dynamics of randomly positioned dipolar spin ensembles
Dipolar spin ensembles with random spin positions attract much attention currently because they help to understand decoherence as it occurs in solid state quantum bits in contact with spin baths. Also, these ensembles are systems which may show many-body localization, at least in the sense of very slow spin dynamics. We present measurements of the autocorrelations of spins on diamond surfaces in a doubly-rotating frame which eliminates local disorder. Strikingly, the time scales in the longitudinal and the transversal channel differ by more than one order of magnitude which is a factor much greater than one would have expected from simulations of spins on lattices. A previously developed dynamic mean-field theory for spins (spinDMFT) fails to explain this phenomenon. Thus, we improve it by extending it to clusters (CspinDMFT). This theory does capture the striking mismatch up to two orders of magnitude for random ensembles. Without positional disorder, however, the mismatch is only moderate with a factor below 4. The pivotal role of positional disorder suggests that the strong mismatch is linked to precursors of many-body localization.  more » « less
Award ID(s):
2014094
PAR ID:
10441126
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
arXivorg
Volume:
arXiv:2307.14188
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the thermalization dynamics of quantum many-body systems at the microscopic level is among the central challenges of modern statistical physics. Here we experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal. We use a near-surface NV center as a nanoscale magnetic sensor to probe correlation dynamics of individual spins in a dipolar interacting surface spin ensemble. We observe that the relaxation rate for each spin is significantly slower than the naive expectation based on independently estimated dipolar interaction strengths with nearest neighbors and is strongly correlated with the timescale of the local magnetic field fluctuation. We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder and present a quantitative explanation based on dynamic resonance counting. Finally, we use resonant spin-lock driving to control the effective strength of the local magnetic fields and reveal the role of the dynamical disorder in different regimes. Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles. 
    more » « less
  2. Abstract We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$$\frac 12$$chain in a random magnetic field. We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space. This region, which includes weak interaction and strong disorder regimes, is independent of the size of the system and depends only on the energy interval. Our approach is based on the reformulation of the localization problem as an expression of quasi-locality for functions of the random many-body XXZ Hamiltonian. This allows us to extend the fractional moment method for proving localization, previously derived in a single-particle localization context, to the many-body setting. 
    more » « less
  3. Dense spin ensembles in solids present a natural platform for studying quantum many-body dynamics. Multiple-pulse coherent control can be used to manipulate the magnetic dipolar interaction between the spins to engineer their dynamics. Here, we investigate the performance of a series of well-known pulse sequences that aim to suppress interspin dipolar couplings. We use a combination of numerical simulations and solid-state nuclear magnetic resonance experiments on adamantane to evaluate and compare sequence performance. We study the role of sequence parameters like interpulse delays and resonance offsets. Disagreements between experiments and theory are typically explained by the presence of control errors and experimental nonidealities. The simulations allow us to explore the influence of factors such as finite pulse widths, rotation errors, and phase transient errors. We also investigate the role of local disorder and establish that it is, perhaps unsurprisingly, a distinguishing factor in the decoupling efficiency of spectroscopic sequences (that preserve Hamiltonian terms proportional to S z ) and time-suspension sequences (which refocus all terms in the internal Hamiltonian). We discuss our findings in the context of previously known analytical results from average Hamiltonian theory. Finally, we explore the ability of time-suspension sequences to protect multispin correlations in the system. Published by the American Physical Society2025 
    more » « less
  4. null (Ed.)
    Abstract The transfer of information between quantum systems is essential for quantum communication and computation. In quantum computers, high connectivity between qubits can improve the efficiency of algorithms, assist in error correction, and enable high-fidelity readout. However, as with all quantum gates, operations to transfer information between qubits can suffer from errors associated with spurious interactions and disorder between qubits, among other things. Here, we harness interactions and disorder between qubits to improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot spins. We use a system of four electron spins, which we configure as two exchange-coupled singlet–triplet qubits. Our approach, which relies on the physics underlying discrete time crystals, enhances the quality factor of spin-eigenstate swaps by up to an order of magnitude. Our results show how interactions and disorder in multi-qubit systems can stabilize non-trivial quantum operations and suggest potential uses for non-equilibrium quantum phenomena, like time crystals, in quantum information processing applications. Our results also confirm the long-predicted emergence of effective Ising interactions between exchange-coupled singlet–triplet qubits. 
    more » « less
  5. The random XXZ quantum spin chain manifests localization (in the form of quasi-locality) in any fixed energy interval, as previously proved by the authors. In this article it is shown that this property implies slow propagation of information, one of the putative signatures of many-body localization (MBL), in the same energy interval. 
    more » « less