skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the dynamics of randomly positioned dipolar spin ensembles
Dipolar spin ensembles with random spin positions attract much attention currently because they help to understand decoherence as it occurs in solid state quantum bits in contact with spin baths. Also, these ensembles are systems which may show many-body localization, at least in the sense of very slow spin dynamics. We present measurements of the autocorrelations of spins on diamond surfaces in a doubly-rotating frame which eliminates local disorder. Strikingly, the time scales in the longitudinal and the transversal channel differ by more than one order of magnitude which is a factor much greater than one would have expected from simulations of spins on lattices. A previously developed dynamic mean-field theory for spins (spinDMFT) fails to explain this phenomenon. Thus, we improve it by extending it to clusters (CspinDMFT). This theory does capture the striking mismatch up to two orders of magnitude for random ensembles. Without positional disorder, however, the mismatch is only moderate with a factor below 4. The pivotal role of positional disorder suggests that the strong mismatch is linked to precursors of many-body localization.  more » « less
Award ID(s):
2014094
PAR ID:
10441126
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
arXivorg
Volume:
arXiv:2307.14188
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the thermalization dynamics of quantum many-body systems at the microscopic level is among the central challenges of modern statistical physics. Here we experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal. We use a near-surface NV center as a nanoscale magnetic sensor to probe correlation dynamics of individual spins in a dipolar interacting surface spin ensemble. We observe that the relaxation rate for each spin is significantly slower than the naive expectation based on independently estimated dipolar interaction strengths with nearest neighbors and is strongly correlated with the timescale of the local magnetic field fluctuation. We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder and present a quantitative explanation based on dynamic resonance counting. Finally, we use resonant spin-lock driving to control the effective strength of the local magnetic fields and reveal the role of the dynamical disorder in different regimes. Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles. 
    more » « less
  2. null (Ed.)
    Abstract The transfer of information between quantum systems is essential for quantum communication and computation. In quantum computers, high connectivity between qubits can improve the efficiency of algorithms, assist in error correction, and enable high-fidelity readout. However, as with all quantum gates, operations to transfer information between qubits can suffer from errors associated with spurious interactions and disorder between qubits, among other things. Here, we harness interactions and disorder between qubits to improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot spins. We use a system of four electron spins, which we configure as two exchange-coupled singlet–triplet qubits. Our approach, which relies on the physics underlying discrete time crystals, enhances the quality factor of spin-eigenstate swaps by up to an order of magnitude. Our results show how interactions and disorder in multi-qubit systems can stabilize non-trivial quantum operations and suggest potential uses for non-equilibrium quantum phenomena, like time crystals, in quantum information processing applications. Our results also confirm the long-predicted emergence of effective Ising interactions between exchange-coupled singlet–triplet qubits. 
    more » « less
  3. Abstract We study the consequences of having translational invariance in space and time in many-body quantum chaotic systems. We consider ensembles of random quantum circuits as minimal models of translational invariant many-body quantum chaotic systems. We evaluate the spectral form factor as a sum over many-body Feynman diagrams in the limit of large local Hilbert space dimension q . At sufficiently large t , diagrams corresponding to rigid translations dominate, reproducing the random matrix theory (RMT) behaviour. At finite t , we show that translational invariance introduces additional mechanisms via two novel Feynman diagrams which delay the emergence of RMT. Our analytics suggests the existence of exact scaling forms which describe the approach to RMT behavior in the scaling limit where both t and L are large while the ratio between L and L Th ( t ), the many-body Thouless length, is fixed. We numerically demonstrate, with simulations of two distinct circuit models, that the resulting scaling functions are universal in the scaling limit. 
    more » « less
  4. In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, these models show the well-known Wannier–Stark localization. We analyze the fate of this localization in the presence of interactions. Remarkably, we find that beyond a critical value of the potential gradient these models exhibit nonergodic behavior as indicated by their spectral and dynamical properties. These models, therefore, constitute a class of generic nonrandom models that fail to thermalize. As such, they suggest new directions for experimentally exploring and understanding the phenomena of many-body localization. We supplement our work by showing that by using machine-learning techniques the level statistics of a system may be calculated without generating and diagonalizing the Hamiltonian, which allows a generation of large statistics. 
    more » « less
  5. null (Ed.)
    Abstract Disorder arising from random locations of charged donors and acceptors introduces localization and diffusive motion that can lead to constructive electron interference and positive magnetoconductivity. At very low temperatures, 3D theory predicts that the magnetoconductivity is independent of temperature or material properties, as verified for many combinations of thin-films and substrates. Here, we find that this prediction is apparently violated if the film thickness d is less than about 300 nm. To investigate the origin of this apparent violation, the magnetoconductivity was measured at temperatures T  = 15 – 150 K in ten, Sn-doped In 2 O 3 films with d  = 13 – 292 nm, grown by pulsed laser deposition on fused silica. We observe a very strong thickness dependence which we explain by introducing a theory that postulates a second source of disorder, namely, non-uniform interface-induced defects whose number decreases exponentially with the interface distance. This theory obeys the 3D limit for the thickest samples and yields a natural figure of merit for interface disorder. It can be applied to any degenerate semiconductor film on any semi-insulating substrate. 
    more » « less