Randomized experiments are widely used to estimate causal effects across many domains. However, classical causal inference approaches rely on independence assumptions that are violated by network interference, when the treatment of one individual influences the outcomes of others. All existing approaches require at least approximate knowledge of the network, which may be unavailable or costly to collect. We consider the task of estimating the total treatment effect (TTE), the average difference between the outcomes when the whole population is treated versus when the whole population is untreated. By leveraging a staggered rollout design, in which treatment is incrementally given to random subsets of individuals, we derive unbiased estimators for TTE that do not rely on any prior structural knowledge of the network, as long as the network interference effects are constrained to low-degree interactions among neighbors of an individual. We derive bounds on the variance of the estimators, and we show in experiments that our estimator performs well against baselines on simulated data. Central to our theoretical contribution is a connection between staggered rollout observations and polynomial extrapolation.
more »
« less
Exploiting neighborhood interference with low-order interactions under unit randomized design
Abstract Network interference, where the outcome of an individual is affected by the treatment assignment of those in their social network, is pervasive in real-world settings. However, it poses a challenge to estimating causal effects. We consider the task of estimating the total treatment effect (TTE), or the difference between the average outcomes of the population when everyone is treated versus when no one is, under network interference. Under a Bernoulli randomized design, we provide an unbiased estimator for the TTE when network interference effects are constrained to low-order interactions among neighbors of an individual. We make no assumptions on the graph other than bounded degree, allowing for well-connected networks that may not be easily clustered. We derive a bound on the variance of our estimator and show in simulated experiments that it performs well compared with standard estimators for the TTE. We also derive a minimax lower bound on the mean squared error of our estimator, which suggests that the difficulty of estimation can be characterized by the degree of interactions in the potential outcomes model. We also prove that our estimator is asymptotically normal under boundedness conditions on the network degree and potential outcomes model. Central to our contribution is a new framework for balancing model flexibility and statistical complexity as captured by this low-order interactions structure.
more »
« less
- PAR ID:
- 10441795
- Date Published:
- Journal Name:
- Journal of Causal Inference
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2193-3685
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Randomized experiments are widely used to estimate the causal effects of a proposed treatment in many areas of science, from medicine and healthcare to the physical and biological sciences, from the social sciences to engineering, and from public policy to the technology industry. Here we consider situations where classical methods for estimating the total treatment effect on a target population are considerably biased due to confounding network effects, i.e., the fact that the treatment of an individual may impact its neighbors’ outcomes, an issue referred to as network interference or as nonindividualized treatment response. A key challenge in these situations is that the network is often unknown and difficult or costly to measure. We assume a potential outcomes model with heterogeneous additive network effects, encompassing a broad class of network interference sources, including spillover, peer effects, and contagion. First, we characterize the limitations in estimating the total treatment effect without knowledge of the network that drives interference. By contrast, we subsequently develop a simple estimator and efficient randomized design that outputs an unbiased estimate with low variance in situations where one is given access to average historical baseline measurements prior to the experiment. Our solution does not require knowledge of the underlying network structure, and it comes with statistical guarantees for a broad class of models. Due to their ease of interpretation and implementation, and their theoretical guarantees, we believe our results will have significant impact on the design of randomized experiments.more » « less
-
Abstract When estimating a global average treatment effect (GATE) under network interference, units can have widely different relationships to the treatment depending on a combination of the structure of their network neighborhood, the structure of the interference mechanism, and how the treatment was distributed in their neighborhood. In this work, we introduce a sequential procedure to generate and select graph- and treatment-based covariates for GATE estimation under regression adjustment. We show that it is possible to simultaneously achieve low bias and considerably reduce variance with such a procedure. To tackle inferential complications caused by our feature generation and selection process, we introduce a way to construct confidence intervals based on a block bootstrap. We illustrate that our selection procedure and subsequent estimator can achieve good performance in terms of root-mean-square error in several semi-synthetic experiments with Bernoulli designs, comparing favorably to an oracle estimator that takes advantage of regression adjustments for the known underlying interference structure. We apply our method to a real-world experimental dataset with strong evidence of interference and demonstrate that it can estimate the GATE reasonably well without knowing the interference processa priori.more » « less
-
Summary For decades, $ N $-of-1 experiments, where a unit serves as its own control and treatment in different time windows, have been used in certain medical contexts. However, due to effects that accumulate over long time windows and interventions that have complex evolution, a lack of robust inference tools has limited the widespread applicability of such $ N $-of-1 designs. This work combines techniques from experimental design in causal inference and system identification from control theory to provide such an inference framework. We derive a model of the dynamic interference effect that arises in linear time-invariant dynamical systems. We show that a family of causal estimands analogous to those studied in potential outcomes are estimable via a standard estimator derived from the method of moments. We derive formulae for higher moments of this estimator and describe conditions under which $ N $-of-1 designs may provide faster ways to estimate the effects of interventions in dynamical systems. We also provide conditions under which our estimator is asymptotically normal and derive valid confidence intervals for this setting.more » « less
-
Estimation of heterogeneous causal effects—that is, how effects of policies and treatments vary across subjects—is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper, we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a nonstandard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.more » « less
An official website of the United States government

