Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances. 
                        more » 
                        « less   
                    
                            
                            Seeing the Disturbed Forest for the Trees: Remote Sensing Is Underutilized to Quantify Critical Zone Response to Unprecedented Disturbance
                        
                    
    
            Abstract Understanding the severity and extent of near surface critical zone (CZ) disturbances and their ecosystem response is a pressing concern in the face of increasing human and natural disturbances. Predicting disturbance severity and recovery in a changing climate requires comprehensive understanding of ecosystem feedbacks among vegetation and the surrounding environment, including climate, hydrology, geomorphology, and biogeochemistry. Field surveys and satellite remote sensing have limited ability to effectively capture the spatial and temporal variability of disturbance and CZ properties. Technological advances in remote sensing using new sensors and new platforms have improved observations of changes in vegetation canopy structure and productivity; however, integrating measures of forest disturbance from various sensing platforms is complex. By connecting the potential for remote sensing technologies to observe different CZ disturbance vectors, we show that lower severity disturbance and slower vegetation recovery are more difficult to quantify. Case studies in montane forests from the western United States highlight new opportunities, including evaluating post‐disturbance forest recovery at multiple scales, shedding light on understory vegetation regrowth, detecting specific physiological responses, and refining ecohydrological modeling. Learning from regional CZ disturbance case studies, we propose future directions to synthesize fragmented findings with (a) new data analysis using new or existing sensors, (b) data fusion across multiple sensors and platforms, (c) increasing the value of ground‐based observations, (d) disturbance modeling, and (e) synthesis to improve understanding of disturbance. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10442132
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responsesAbstract Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, insect outbreaks and pathogens, extreme weather events, and human activity. Climate warming in the ABZ is occurring at over twice the rate of the global average, and as a result the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on ecosystem properties and function. However, many ABZ disturbances are relatively understudied and have different sensitivities to climate and trajectories of recovery, resulting in considerable uncertainty in the impacts of climate warming and human land use on ABZ vegetation dynamics and in the interactions between disturbance types. Here we review the current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal frequencies, spatial extents, and severity. We also summarize current knowledge of interactions and feedbacks among ABZ disturbances and characterize typical trajectories of vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. We conclude with a summary of critical data and knowledge gaps and identify priorities for future study.more » « less
- 
            Forests have considerable potential to help mitigate human-caused climate change and provide society with many cobenefits. However, climate-driven risks may fundamentally compromise forest carbon sinks in the 21st century. Here, we synthesize the current understanding of climate-driven risks to forest stability from fire, drought, biotic agents, and other disturbances. We review how efforts to use forests as natural climate solutions presently consider and could more fully embrace current scientific knowledge to account for these climate-driven risks. Recent advances in vegetation physiology, disturbance ecology, mechanistic vegetation modeling, large-scale ecological observation networks, and remote sensing are improving current estimates and forecasts of the risks to forest stability. A more holistic understanding and quantification of such risks will help policy-makers and other stakeholders effectively use forests as natural climate solutions.more » « less
- 
            null (Ed.)Abstract Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.more » « less
- 
            Across the globe, the forest carbon sink is increasingly vulnerable to an expanding array of low- to moderate-severity disturbances. However, some forest ecosystems exhibit functional resistance (i.e., the capacity of ecosystems to continue functioning as usual) following disturbances such as extreme weather events and insect or fungal pathogen outbreaks. Unlike severe disturbances (e.g., stand-replacing wildfires), moderate severity disturbances do not always result in near-term declines in forest production because of the potential for compensatory growth, including enhanced subcanopy production. Community-wide shifts in subcanopy plant functional traits, prompted by disturbance-driven environmental change, may play a key mechanistic role in resisting declines in net primary production (NPP) up to thresholds of canopy loss. However, the temporal dynamics of these shifts, as well as the upper limits of disturbance for which subcanopy production can compensate, remain poorly characterized. In this study, we leverage a 4-year dataset from an experimental forest disturbance in northern Michigan to assess subcanopy community trait shifts as well as their utility in predicting ecosystem NPP resistance across a wide range of implemented disturbance severities. Through mechanical girdling of stems, we achieved a gradient of severity from 0% (i.e., control) to 45, 65, and 85% targeted gross canopy defoliation, replicated across four landscape ecosystems broadly representative of the Upper Great Lakes ecoregion. We found that three of four examined subcanopy community weighted mean (CWM) traits including leaf photosynthetic rate ( p = 0.04), stomatal conductance ( p = 0.07), and the red edge normalized difference vegetation index ( p < 0.0001) shifted rapidly following disturbance but before widespread changes in subcanopy light environment triggered by canopy tree mortality. Surprisingly, stimulated subcanopy production fully compensated for upper canopy losses across our gradient of experimental severities, achieving complete resistance (i.e., no significant interannual differences from control) of whole ecosystem NPP even in the 85% disturbance treatment. Additionally, we identified a probable mechanistic switch from nutrient-driven to light-driven trait shifts as disturbance progressed. Our findings suggest that remotely sensed traits such as the red edge normalized difference vegetation index (reNDVI) could be particularly sensitive and robust predictors of production response to disturbance, even across compositionally diverse forests. The potential of leaf spectral indices to predict post-disturbance functional resistance is promising given the capabilities of airborne to satellite remote sensing. We conclude that dynamic functional trait shifts following disturbance can be used to predict production response across a wide range of disturbance severities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
