skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Remote sensing: generation of long‐term kelp bed data sets for evaluation of impacts of climatic variation
Abstract A critical tool in assessing ecosystem change is the analysis of long‐term data sets, yet such information is generally sparse and often unavailable for many habitats. Kelp forests are an example of rapidly changing ecosystems that are in most cases data poor. Because kelp forests are highly dynamic and have high intrinsic interannual variability, understanding how regional‐scale drivers are driving kelp populations—and particularly how kelp populations are responding to climate change—requires long‐term data sets. However, much of the work on kelp responses to climate change has focused on just a few, relatively long‐lived, perennial, canopy‐forming species. To understand how kelp populations with different life history traits are responding to climate‐related variability, we leverage 35 yr of Landsat satellite imagery to track the population size of an annual, ruderal kelp,Nereocystis luetkeana, across Oregon. We found high levels of interannual variability inNereocystiscanopy area and varying population trajectories over the last 35 yr. Surprisingly, OregonNereocystispopulation sizes were unresponsive to a 2014 marine heat wave accompanied by increases in urchin densities that decimated northern CaliforniaNereocystispopulations. Some OregonNereocystis populations have even increased in area relative to pre‐2014 levels. Analysis of environmental drivers found thatNereocystispopulation size was negatively correlated with estimated nitrate levels and positively correlated with winter wave height. This pattern is the inverse of the predicted relationship based on extensive prior work on the perennial kelpMacrocystis pyriferaand may be related to the annual life cycle ofNereocystis. This article demonstrates (1) the value of novel remote sensing tools to create long‐term data sets that may challenge our understanding of nearshore marine species and (2) the need to incorporate life history traits into our theory of how climate change will shape the ocean of the future.  more » « less
Award ID(s):
1600230 1831937
PAR ID:
10442945
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
7
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Climate change is responsible for increased frequency, intensity, and duration of extreme events, such as marine heatwaves (MHWs). Within eastern boundary current systems, MHWs have profound impacts on temperature-nutrient dynamics that drive primary productivity. Bull kelp ( Nereocystis luetkeana ) forests, a vital nearshore habitat, experienced unprecedented losses along 350 km of coastline in northern California beginning in 2014 and continuing through 2019. These losses have had devastating consequences to northern California communities, economies, and fisheries. Using a suite of in situ and satellite-derived data, we demonstrate that the abrupt ecosystem shift initiated by a multi-year MHW was preceded by declines in keystone predator population densities. We show strong evidence that northern California kelp forests, while temporally dynamic, were historically resilient to fluctuating environmental conditions, even in the absence of key top predators, but that a series of coupled environmental and biological shifts between 2014 and 2016 resulted in the formation of a persistent, altered ecosystem state with low primary productivity. Based on our findings, we recommend the implementation of ecosystem-based and adaptive management strategies, such as (1) monitoring the status of key ecosystem attributes: kelp distribution and abundance, and densities of sea urchins and their predators, (2) developing management responses to threshold levels of these attributes, and (3) creating quantitative restoration suitability indices for informing kelp restoration efforts. 
    more » « less
  2. Alfaro, Andrea C; Ragg, Norman; Venter, Leonie (Ed.)
    Understanding the recruitment dynamics of invertebrates in kelp forests is critical to informing climate-ready restoration. Here we examine abalone and sea urchin recruitment (3–20 mm in size) patterns in northern California across a period of drastic change. Annual surveys were conducted before, during and after the MHW (2014–2016), the loss of a major predatory sea star (2012–2016) and the collapse of a bull kelp forest in 2014. Divers surveyed artificial reef recruitment modules (n = 12) over 20 years in an area that once supported dense bull kelp, Nereocystis leutkeana, forests and the world's largest recreational abalone fishery. From 2016 to 2022, we tracked the decline of red abalone, Haliotis rufescens, recruitment and the rise of purple sea urchin, Strongylocentrotus purpuratus, recruitment. Adult densities of purple sea urchins increased as did newly settled sea urchins (<3 mm), while adult and newly settled red abalone declined. Eight years after the kelp forest collapse, red abalone recruitment remained low and sea urchin recruitment continued to increase. Recruitment patterns can inform both abalone restoration targets and sea urchin dynamics as part of a more holistic kelp forest recovery plan that is responsive to climate change drivers. 
    more » « less
  3. Thanos Dailianis (Ed.)
    Kelp forest declines have been linked to warming ocean temperatures worldwide. Ocean warming rarely occurs in isolation, so multiple stressor studies are necessary to understand the physiological responses of kelp to climate change. The canopy-forming bull kelp, Nereocystis luetkeana, is going locally extinct in areas of the Salish Sea that are seasonally warm and nutrient poor, while the understory kelp, Saccharina latissima, persists at those sites. Further, nitrogen availability can alter physiological responses of kelps to temperature stress, including alleviating warming stress. We compared the physiological responses of kelp sporophytes to high temperature stress and nitrogen limitation between two populations of N. luetkeana with different environmental histories (warm and nutrient poor vs. cold and nutrient rich) and between two species, N. luetkeana and S. latissima. Using laboratory mesocosms, we tested the interactive effects of short term (8-9 day) exposure of kelp blades to different temperatures: low (9, 13°C), moderate (15, 16°C), and warm (21°C) at two different nitrogen concentrations: low (1-3 μM) vs. high (>10 μM). We examined a wide array of physiological responses: blade growth, photosynthesis, respiration, photosynthetic yield, nutrient uptake, and tissue C:N. Both kelp species responded negatively to elevated temperatures, but not to low nitrogen levels. Blades of both species showed signs of metabolic stress and reduced growth in the warmest temperature treatment (21°C), at both high and low nitrogen levels, suggesting that N. luetkeana and S. latissima are susceptible to thermal stress over short time periods. Populations of N. luetkeana from warm, nutrient poor and cool, nutrient rich areas were equally susceptible to the effects of ocean warming. Our results suggest that nutrient additions may actually reduce kelp performance at supra-optimal temperatures, and a thorough understanding of kelp responses to coastal temperature and nutrient dynamics is needed to guide conservation and restoration actions. 
    more » « less
  4. Abstract Dispersal of reproductive propagules determines recruitment patterns and connectivity among populations and can influence how populations respond to major disturbance events. Dispersal distributions can depend on propagule release strategies. For instance, the bull kelp,Nereocystis luetkeana, can release propagules (spores) from two heights in the water column (“bimodal release”): at the water surface, directly from the reproductive tissues (sori) on the kelp's blades, and near the seafloor after the sori abscise and sink through the water column.N. luetkeanais a foundation species that occurs from central California to Alaska and is experiencing unprecedented levels of population declines near its southern range limit. We know little of the kelp's dispersal distributions, which could influence population recovery and restoration. Here, we quantify how bimodal spore release heights affect dispersal outcomes based on a numerical model specifically designed forN. luetkeana. The model incorporates oceanographic conditions typical of the species' coastal range and kelp biological traits. With bimodal release heights, 34% of spores are predicted to settle within 10 m of the parental alga and 60% are predicted to disperse beyond 100 m. As an annual species, bimodal release heights can facilitate the local regeneration of adults within a source kelp forest while also supporting connectivity among multiple forests within broader bull kelp metapopulations. To leverage this pattern of bimodal spore dispersal in bull kelp restoration management, directing resources toward strategically located focal populations that can seed other ones could amplify the scale of recovery. 
    more » « less
  5. Pérez-Matus, Alejandro (Ed.)
    Giant kelp and bull kelp forests are increasingly at risk from marine heatwave events, herbivore outbreaks, and the loss or alterations in the behavior of key herbivore predators. The dynamic floating canopy of these kelps is well-suited to study via satellite imagery, which provides high temporal and spatial resolution data of floating kelp canopy across the western United States and Mexico. However, the size and complexity of the satellite image dataset has made ecological analysis difficult for scientists and managers. To increase accessibility of this rich dataset, we created Kelpwatch, a web-based visualization and analysis tool. This tool allows researchers and managers to quantify kelp forest change in response to disturbances, assess historical trends, and allow for effective and actionable kelp forest management. Here, we demonstrate how Kelpwatch can be used to analyze long-term trends in kelp canopy across regions, quantify spatial variability in the response to and recovery from the 2014 to 2016 marine heatwave events, and provide a local analysis of kelp canopy status around the Monterey Peninsula, California. We found that 18.6% of regional sites displayed a significant trend in kelp canopy area over the past 38 years and that there was a latitudinal response to heatwave events for each kelp species. The recovery from heatwave events was more variable across space, with some local areas like Bahía Tortugas in Baja California Sur showing high recovery while kelp canopies around the Monterey Peninsula continued a slow decline and patchy recovery compared to the rest of the Central California region. Kelpwatch provides near real time spatial data and analysis support and makes complex earth observation data actionable for scientists and managers, which can help identify areas for research, monitoring, and management efforts. 
    more » « less