skip to main content


Title: How and why plant ionomes vary across North American grasslands and its implications for herbivore abundance
Abstract

Plant elemental content can vary up to 1,000‐fold across grasslands, with implications for the herbivores the plants feed. We contrast the regulation, in grasses and forbs, of 12 elements essential to plants and animals (henceforth plant‐essential), 7 essential to animals but not plants (animal‐essential) and 6 with no known metabolic function (nonessential). Four hypotheses accounted for up to two thirds of the variation in grass and forb ionomes across 54 North American grasslands. Consistent with the supply‐side hypothesis, the plant‐essential ionome of both forbs and grasses tracked soil availability. Grass ionomes were more likely to harvest even nonessential elements like Cd and Sr. Consistent with the grazing hypothesis, cattle‐grazed grasslands also accumulated a handful of metals like Cu and Cr. Consistent with the NP‐catalysis hypothesis, increases in the macronutrients N and P in grasses were associated with higher densities of cofactors like Zn and Cu. The plant‐essential elements of forbs, in contrast, consistently varied as per the nutrient‐dilution hypothesis—there was a decrease in elemental parts per million with increasing local carbohydrate production. Combined, these data fit a working hypothesis that grasses maintain lower elemental densities and survive on nutrient‐poor patches by opportunistically harvesting soil nutrients. In contrast, nutrient‐rich forbs use episodes of high precipitation and temperature to build new carbohydrate biomass, raising leaves higher to compete for light, but diluting the nutrient content in every bite of tissue. Herbivores of forbs may thus be particularly prone to increases inpCO2via nutrient dilution.

 
more » « less
Award ID(s):
2025849
NSF-PAR ID:
10443846
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
102
Issue:
10
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The impacts of altered biogeochemical cycles on ecological systems are likely to vary with trophic level. Predicting how these changes will affect ecological food webs is further complicated by human activities, which are simultaneously altering the availability of macronutrients like nitrogen (N) and phosphorus (P), and micronutrients such as sodium (Na). Here we contrast three hypotheses that predict how increasing nutrient availability will shape grassland food webs. We conducted a distributed factorial fertilization experiment (N and P crossed with NaCl) across four North American grasslands, quantifying the responses of aboveground plant biomass and volume, plant tissue and soil elemental concentrations, as well as the abundance of five arthropod functional groups. Fertilization with N and P increased plant biomass and foliar N and P concentrations in grasses but not forbs. Fertilization with Na had no effect on plant biomass but increased foliar Na concentrations. Consistent with the nutrient limitation hypothesis, we found strong evidence of nutrient limitation for insect herbivores across the four sites with sucking (phloem and xylem feeding) herbivores increasing in abundance with NP fertilization and chewing herbivores increasing in response to both Na and NP fertilization, and a trend for increased response of arthropods to lower plant nutrient availability. We found no evidence for an interaction of NaCl and NP on arthropod abundance as predicted by the serial colimitation hypothesis. Finally, consistent with the ecosystem size hypothesis, predator and parasitoid abundances increased with plant volume, but not fertilization. Our results suggest these functional group‐specific responses to changes in plant nutrients and structure are key to predicting the future of grassland food webs in an era with increasing use of N and P fertilizers, and increasing terrestrial inputs of Na from road salt, saline irrigation water, and aerosols due to rising sea levels.

     
    more » « less
  2. Abstract

    The electrolytes Na and K both function to maintain water balance and membrane potential. However, these elements work differently in plants—where K is the primary electrolyte—than in animals—where ATPases require a balanced supply of Na and K. Here, we use monthly factorial additions of Na and K to simulate bovine urine inputs and explore how these electrolytes ramify through a prairie food web. Against a seasonal trend of increasing grass biomass and decreasing water and elemental tissue concentrations, +K and +Na plots boosted water content and, when added together, plant biomass. Compared to control plots, +Na and +K plots increased element concentrations in above‐ground plant tissue early in summer and decreased them in September. Simultaneously, invertebrate abundance on Na and K additions were sequentially higher and lower than control plots from June to September and were most suppressed when grass was most nutrient rich. K was the more effective plant electrolyte, but Na frequently promoted similar changes in grass ionomes. The soluble/leachable ions of Na and K showed significant ability to shape plant growth, water content, and the 15‐element ionome, with consequences for higher trophic levels. Grasslands with high inputs of Na and K—via large mammal grazers or coastal aerosol deposition—likely enhance the ability of plants to adjust their above‐ground ionomes, with dramatic consequences for the distribution of invertebrate consumers.

     
    more » « less
  3. Evidence for global insect declines mounts, increasing our need to understand underlying mechanisms. We test the nutrient dilution (ND) hypothesis—the decreasing concentration of essential dietary minerals with increasing plant productivity—that particularly targets insect herbivores. Nutrient dilution can result from increased plant biomass due to climate or CO2enrichment. Additionally, when considering long-term trends driven by climate, one must account for large-scale oscillations including El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). We combine long-term datasets of grasshopper abundance, climate, plant biomass, and end-of-season foliar elemental content to examine potential drivers of abundance cycles and trends of this dominant herbivore. Annual grasshopper abundances in 16- and 22-y time series from a Kansas prairie revealed both 5-y cycles and declines of 2.1–2.7%/y. Climate cycle indices of spring ENSO, summer NAO, and winter or spring PDO accounted for 40–54% of the variation in grasshopper abundance, mediated by effects of weather and host plants. Consistent with ND, grass biomass doubled and foliar concentrations of N, P, K, and Na—nutrients which limit grasshopper abundance—declined over the same period. The decline in plant nutrients accounted for 25% of the variation in grasshopper abundance over two decades. Thus a warming, wetter, more CO2-enriched world will likely contribute to declines in insect herbivores by depleting nutrients from their already nutrient-poor diet. Unlike other potential drivers of insect declines—habitat loss, light and chemical pollution—ND may be widespread in remaining natural areas.

     
    more » « less
  4. Abstract

    Plant damage by invertebrate herbivores and pathogens influences the dynamics of grassland ecosystems, but anthropogenic changes in nitrogen and phosphorus availability can modify these relationships.

    Using a globally distributed experiment, we describe leaf damage on 153 plant taxa from 27 grasslands worldwide, under ambient conditions and with experimentally elevated nitrogen and phosphorus.

    Invertebrate damage significantly increased with nitrogen addition, especially in grasses and non‐leguminous forbs. Pathogen damage increased with nitrogen in grasses and legumes but not forbs. Effects of phosphorus were generally weaker. Damage was higher in grasslands with more precipitation, but climatic conditions did not change effects of nutrients on leaf damage. On average, invertebrate damage was relatively higher on legumes and pathogen damage was relatively higher on grasses. Community‐weighted mean damage reflected these functional group patterns, with no effects of N on community‐weighted pathogen damage (due to opposing responses of grasses and forbs) but stronger effects of N on community‐weighted invertebrate damage (due to consistent responses of grasses and forbs).

    Synthesis. As human‐induced inputs of nitrogen and phosphorus continue to increase, understanding their impacts on invertebrate and pathogen damage becomes increasingly important. Our results demonstrate that eutrophication frequently increases plant damage and that damage increases with precipitation across a wide array of grasslands. Invertebrate and pathogen damage in grasslands is likely to increase in the future, with potential consequences for plant, invertebrate and pathogen communities, as well as the transfer of energy and nutrients across trophic levels.

     
    more » « less
  5. Ecological restoration often relies on disturbance as a tool for establishing target plant communities, but disturbance can be a double‐edged sword, at times initiating invasion and unintended outcomes. Here we test how fire disturbance, designed to enhance restoration seeding success, combines with climate and initial vegetation conditions to shift perennial versus annual grass dominance and overall community diversity in Pacific Northwest grasslands. We seeded both native and introduced perennial grasses and native forbs in paired, replicated burned‐unburned plots in three sites along a latitudinal climate gradient from southern Oregon to central‐western Washington. Past restoration and climate manipulations at each site had increased the variation of starting conditions between plots. Burning promoted the expansion of extant forbs and perennial grasses across all sites. Burning also enhanced the seeding success of native perennial grass and native forbs at the northern and central site, and the success of introduced perennial grasses across all three sites. Annual grass dominance was driven more by latitude than burning, with annuals maintaining their dominance in the south and perennials in the north. At the same time, unrestored grasslands surrounding all sites remained dominated by perennial grasses, suggesting that initial plot clearing may have allowed for annual grass invasion in the southern site. When paired with disturbance, further warming may increase the risk of annual grass dominance, a potentially persistent state.

     
    more » « less