Abstract Ferroelectric materials exhibit spontaneous polarization that can be switched by electric field. Beyond traditional applications as nonvolatile capacitive elements, the interplay between polarization and electronic transport in ferroelectric thin films has enabled a path to neuromorphic device applications involving resistive switching. A fundamental challenge, however, is that finite electronic conductivity may introduce considerable power dissipation and perhaps destabilize ferroelectricity itself. Here, tunable microwave frequency electronic response of domain walls injected into ferroelectric lead zirconate titanate (PbZr0.2Ti0.8O3) on the level of a single nanodomain is revealed. Tunable microwave response is detected through first‐order reversal curve spectroscopy combined with scanning microwave impedance microscopy measurements taken near 3 GHz. Contributions of film interfaces to the measured AC conduction through subtractive milling, where the film exhibited improved conduction properties after removal of surface layers, are investigated. Using statistical analysis and finite element modeling, we inferred that the mechanism of tunable microwave conductance is the variable area of the domain wall in the switching volume. These observations open the possibilities for ferroelectric memristors or volatile resistive switches, localized to several tens of nanometers and operating according to well‐defined dynamics under an applied field. 
                        more » 
                        « less   
                    
                            
                            Polarity effects on wake‐up behavior of Al 0.94 B 0.06 N ferroelectrics
                        
                    
    
            Abstract Wurtzite ferroelectric materials are promising candidates for energy‐efficient memory technologies, particularly for applications requiring high operating temperatures. Asymmetric wake‐up behaviors, in which the polarization reversal depends both on polarity and cycle number for the first few dozen cycles, must be better understood for reliable device operation. Here, the detailed analysis of the asymmetric wake‐up behavior of thin film Al0.94B0.06N was performed combining time‐resolved switching measurements with Rayleigh analysis, piezoelectric measurements, and etching experiments of progressively switched samples. The analysis shows that the gradual opening of the polarization hysteresis loops associated with wake‐up is driven by a gradual increase in the domain‐wall density and/or domain‐wall mobility with electric field cycle to the polarity opposite to the growth polarity. The insights of this discovery will help to guide interface and polarity design in the eventual deployment of reliable devices based on these materials. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10443885
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 107
- Issue:
- 3
- ISSN:
- 0002-7820
- Format(s):
- Medium: X Size: p. 1523-1532
- Size(s):
- p. 1523-1532
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Domain wall nanoelectronics is a rapidly evolving field, which explores the diverse electronic properties of the ferroelectric domain walls for application in low‐dimensional electronic systems. One of the most prominent features of the ferroelectric domain walls is their electrical conductivity. Here, using a combination of scanning probe and scanning transmission electron microscopy, the mechanism of the tunable conducting behavior of the domain walls in the sub‐micrometer thick films of the technologically important ferroelectric LiNbO3is explored. It is found that the electric bias generates stable domains with strongly inclined domain boundaries with the inclination angle reaching 20° with respect to the polar axis. The head‐to‐head domain boundaries exhibit high conductance, which can be modulated by application of the sub‐coercive voltage. Electron microscopy visualization of the electrically written domains and piezoresponse force microscopy imaging of the very same domains reveals that the gradual and reversible transition between the conducting and insulating states of the domain walls results from the electrically induced wall bending near the sample surface. The observed modulation of the wall conductance is corroborated by the phase‐field modeling. The results open a possibility for exploiting the conducting domain walls as the electrically controllable functional elements in the multilevel logic nanoelectronics devices.more » « less
- 
            Abstract Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.more » « less
- 
            Abstract The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO3. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO3thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO6octahedra at the APB that bridges the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO6octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains.more » « less
- 
            Antiferroelectric (AFE) materials are excellent candidates for sensors, capacitors, and data storage due to their electrical switchability and high-energy storage capacity. However, imaging the nanoscale landscape of AFE domains is notoriously inaccessible, which has hindered development and intentional tuning of AFE materials. Here, we demonstrate that polarization-dependent photoemission electron microscopy can resolve the arrangement and orientation of in-plane AFE domains on the nanoscale, despite the absence of a net lattice polarization. Through direct determination of electronic transition orientations and analysis of domain boundary constraints, we establish that antiferroelectricity in β′-In2Se3is a robust property from the scale of tens of nanometers to tens of micrometers. Ultimately, the method for imaging AFE domain organization presented here opens the door to investigations of the influence of domain formation and orientation on charge transport and dynamics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
