skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subseasonal Forecasts of Opportunity Identified by an Explainable Neural Network
Abstract Midlatitude prediction on subseasonal timescales is difficult due to the chaotic nature of the atmosphere and often requires the identification of favorable atmospheric conditions that may lead to enhanced skill (“forecasts of opportunity”). Here, we demonstrate that an artificial neural network (ANN) can identify such opportunities for tropical‐extratropical circulation teleconnections within the North Atlantic (40°N, 325°E) at a lead of 22 days using the network's confidence in a given prediction. Furthermore, layer‐wise relevance propagation (LRP), an ANN explainability technique, pinpoints the relevant tropical features the ANN uses to make accurate predictions. We find that LRP identifies tropical hot spots that correspond to known favorable regions for midlatitude teleconnections and reveals a potential new pattern for prediction in the North Atlantic on subseasonal timescales.  more » « less
Award ID(s):
1934668
PAR ID:
10444436
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
10
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Subseasonal‐to‐decadal atmospheric prediction skill attained from initial conditions is typically limited by the chaotic nature of the atmosphere. However, for some atmospheric phenomena, prediction skill on subseasonal‐to‐decadal timescales is increased when the initial conditions are in a particular state. In this study, we employ machine learning to identify sea surface temperature (SST) regimes that enhance prediction skill of North Atlantic atmospheric circulation. An ensemble of artificial neural networks is trained to predict anomalous, low‐pass filtered 500 mb height at 7–8 weeks lead using SST. We then use self‐organizing maps (SOMs) constructed from 9 regions within the SST domain to detect state‐dependent prediction skill. SOMs are built using the entire SST time series, and we assess which SOM units feature confident neural network predictions. Four regimes are identified that provide skillful seasonal predictions of 500 mb height. Our findings demonstrate the importance of extratropical decadal SST variability in modulating downstream ENSO teleconnections to the North Atlantic. The methodology presented could aid future forecasting on subseasonal‐to‐decadal timescales. 
    more » « less
  2. Abstract While the Madden‐Julian oscillation (MJO) is known to influence the midlatitude circulation and its predictability on subseasonal‐to‐seasonal timescales, little is known how this connection may change with anthropogenic warming. This study investigates changes in the causal pathways between the MJO and the North Atlantic oscillation (NAO) within historical and SSP585 simulations of the Community Earth System Model 2‐Whole Atmosphere Community Climate Model (CESM2‐WACCM) coupled climate model. Two data‐driven approaches are employed, namely, the STRIPES index and graphical causal models. These approaches collectively indicate that the MJO's influence on the North Atlantic strengthens in the future, consistent with an extended jet‐stream. In addition, the graphical causal models allow us to distinguish the causal pathways associated with the teleconnections. While both a stratospheric and tropospheric pathway connect the MJO to the North Atlantic in CESM2‐WACCM, the strengthening of the MJO‐NAO causal connection over the 21st century is shown to be due exclusively to teleconnections via the tropospheric pathway. 
    more » « less
  3. Abstract This study evaluates the ability of state-of-the-art subseasonal to seasonal (S2S) forecasting systems to represent and predict the teleconnections of the Madden Julian Oscillations and their effects on weather in terms of midlatitude weather patterns and North Atlantic tropical cyclones. This evaluation of forecast systems applies novel diagnostics developed to track teleconnections along their preferred pathways in the troposphere and stratosphere, and to measure the global and regional responses induced by teleconnections across both the Northern and Southern Hemispheres. Results of this study will help the modeling community understand to what extent the potential to predict the weather on S2S time scales is achieved by the current generation of forecasting systems, while informing where to focus further development efforts. The findings of this study will also provide impact modelers and decision makers with a better understanding of the potential of S2S predictions related to MJO teleconnections. 
    more » « less
  4. Abstract Summertime heavy rainfall and its resultant floods are among the most harmful natural hazards in the US Midwest, one of the world's primary crop production areas. However, seasonal forecasts of heavy rain, currently based on preseason sea surface temperature anomalies (SSTAs), remain unsatisfactory. Here, we present evidence that sea surface salinity anomalies (SSSAs) over the tropical western Pacific and subtropical North Atlantic are skillful predictors of summer time heavy rainfall one season ahead. A one standard deviation change in tropical western Pacific SSSA is associated with a 1.8 mm day−1increase in local precipitation, which excites a teleconnection pattern to extratropical North Pacific. Via extratropical air‐sea interaction and long memory of midlatitude SSTA, a wave train favorable for US Midwest heavy rain is induced. Combined with soil moisture feedbacks bridging the springtime North Atlantic salinity, the SSSA‐based statistical prediction model improves Midwest heavy rainfall forecasts by 92%, complementing existing SSTA‐based frameworks. 
    more » « less
  5. Abstract Subseasonal tropical cyclone (TC) reforecasts from the Community Earth System Model version 2 (CAM6) subseasonal prediction system are examined in this study. We evaluate the modeled TC climatology and the probabilistic forecast skill of basin‐wide TC genesis at weekly temporal resolution. Prediction skill is calculated using the Brier skill score relative to a constant annual mean climatology and to a monthly varying seasonal climatology during TC season. The model captures the observed basin‐wide climatological TC seasonality and spatial distributions at weeks 1–6, but TC genesis is largely underestimated from Week 2 onward. For some basins and lead times, the predicted TC genesis is primarily controlled by the number of TC “seeds” and the mean‐state climate condition. The model has good prediction skill relative to the constant climatology across all the basins and lead times, but is only skillful in the eastern Pacific, North Indian Ocean, and Southern Hemisphere at Week 1 when compared to the seasonal climatology, indicating limited skill in predicting deviations from the seasonal cycle. We find strong modulations of the predicted TC genesis at up to 3 weeks of forecast lead time by the Madden‐Julian Oscillation. The interannual variability of predicted TC genesis and accumulated cyclone energy are skillfully predicted in the North Atlantic and the Northwestern Pacific, with a strong modulation by the El Nino‐Southern Oscillation. 
    more » « less