Title: The effects of methanol clustering on methanol–water nucleation
The formation of subcritical methanol clusters in the vapor phase is known to complicate the analysis of nucleation measurements. Here, we investigate how this process affects the onset of binary nucleation as dilute water–methanol mixtures in nitrogen carrier gas expand in a supersonic nozzle. These are the first reported data for water–methanol nucleation in an expansion device. We start by extending an older monomer–dimer–tetramer equilibrium model to include larger clusters, relying on Helmholtz free energy differences derived from Monte Carlo simulations. The model is validated against the pressure/temperature measurements of Laksmono et al. [Phys. Chem. Chem. Phys. 13, 5855 (2011)] for dilute methanol–nitrogen mixtures expanding in a supersonic flow prior to the appearance of liquid droplets. These data are well fit when the maximum cluster size imax is 6–12. The extended equilibrium model is then used to analyze the current data. On the addition of small amounts of water, heat release prior to particle formation is essentially unchanged from that for pure methanol, but liquid formation proceeds at much higher temperatures. Once water comprises more than ∼24 mol % of the condensable vapor, droplet formation begins at temperatures too high for heat release from subcritical cluster formation to perturb the flow. Comparing the experimental results to binary nucleation theory is challenged by the need to extrapolate data to the subcooled region and by the inapplicability of explicit cluster models that require a minimum of 12 molecules in the critical cluster. more »« less
Colussi, Agustín J.; Enami, Shinichi
(, Chemical Science)
null
(Ed.)
Recently, Gallo et al. ( Chem. Sci., 2019, 10, 2566) investigated whether the previously reported oligomerization of isoprene vapor on the surface of pH < 4 water in an electrospray ionization (ESI) mass spectrometer ( J. Phys. Chem. A, 2012, 116, 6027 and Phys. Chem. Chem. Phys., 2018, 20, 15400) would also proceed in liquid isoprene–acidic water emulsions. Gallo et al. hypothesized that emulsified liquid isoprene would oligomerize on the surface of acidic water because, after all, isoprene, liquid or vapor, is always a hydrophobe. In their emulsion experiments, isoprene oligomers were to be detected by ex situ proton magnetic resonance ( 1 H-NMR) spectrometry.
Miller, Samantha L.; Sartini, Michael; Windom, Bret C.; Suiter, Christopher L.; McLinden, Mark O.; Levinger, Nancy E.; Widegren, Jason A.
(, Gas Science and Engineering)
The vapor-liquid equilibrium (VLE) of methane + water mixtures has been studied with nuclear magnetic resonance (NMR) spectroscopy. This work had two primary goals. The first goal was to develop methods that broaden the utility of NMR spectroscopy for VLE measurements. In this regard, we report a method by which the liquid-phase and vapor-phase compositions are measured in separate experiments by adjusting the height of the liquid phase in the sample tube. We also report a method for hastening phase equilibration by adding glass beads to the sample and repeatedly inverting the sample tube. The second goal of this work was to collect VLE data on a challenging mixture with real-world importance. Mixtures of methane + water are a useful test case because of their challenging characteristics, including the widely differing vapor pressures of the two components. One use for accurate VLE data on methane + water mixtures is to better predict the formation of harmful liquid phases in natural gas pipelines. Herein we utilize 1H NMR spectroscopy to measure the VLE of methane + water mixtures at temperatures of 299.73, 307.98, and 323.25 K, and pressures ranging from 0.69 MPa to 13.89 MPa. Experiments were carried out with a 600 MHz spectrometer. Mixtures were prepared and equilibrated in a high pressure zirconia sample tube with an integrated needle valve. NMR-based VLE measurements on the liquid phase are in good agreement with available literature data and with Henry’s Law predictions at low pressures. However, the commonly used GERG-2008 model for natural gas systems deviates dramatically from the experimental data for the liquid phase. NMR-based VLE measurements on the vapor-phase resulted in measured water concentrations that are systematically lower than available literature data and models. This systematic offset is likely caused by peak overlap in the NMR spectra.
The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum.
Wang, Yiming; Stillinger, Frank H.; Debenedetti, Pablo G.
(, The Journal of Chemical Physics)
Molecular chirality is a fundamental phenomenon, underlying both life as we know it and industrial pharmaceutical syntheses. Understanding the symmetry breaking phase transitions exhibited by many chiral molecular substances provides basic insights for topics ranging from the origin of life to the rational design of drug manufacturing processes. In this work, we have performed molecular dynamics simulations to investigate the fluid–fluid phase transitions of a flexible three-dimensional four-site chiral molecular model developed by Latinwo et al. [J. Chem. Phys. 145, 154503 (2016)] and Petsev et al. [J. Chem. Phys. 155, 084105 (2021)]. By introducing a bias favoring local homochiral vs heterochiral interactions, the system exhibits a phase transition from a single achiral phase to a single chiral phase that undergoes infrequent interconversion between the two thermodynamically identical chiral states: the L-rich and D-rich phases. According to the phase rule, this reactive binary system has two independent degrees of freedom and exhibits a density-dependent critical locus. Below the liquid–liquid critical locus, there exists a first-order vapor–liquid coexistence region with a single independent degree of freedom. Our results provide basic thermodynamic and kinetic insights for understanding many-body chiral symmetry breaking phenomena.
Zou, Shufan; Zhou, Dezhi; Yang, Suo.
(, 12th U.S. National Combustion Meeting)
null
(Ed.)
Due to the longer auto-ignition time with liquid fuels compared with hydrogen, the understanding of interaction of shock waves with sprays and the subsequent vapor mixing is significant to design ramjets/scramjets with liquid fuel sprays. In this study, an Eulerian-Lagrangian framework is developed based on the OpenFOAM platform. In this solver, detailed multi-component transport models for Eulerian gas-phase species properties are included. In addition, Lagrangian spray break-up, atomization and evaporation models are added to simulate liquid phase. In addition, an equilibrium wall function is added to model the near-wall properties. The newly developed solver is used to conduct large eddy simulations (LES) on non-reactive liquid jets in supersonic crossflow (JISCF) with liquid sprays. The liquid penetration length are compared with the experimental data, showing a very good agreement. Effects of evaporation and fuel properties (e.g., heat capacity and enthalpy of evaporation) on penetration length, temperature, Sauter mean diameter (SMD) and volumetric parcel flux are discussed in this study. It is shown that evaporation effects primarily show up in the temperature field. For n-heptane sprays, such impact could be conducted to other properties of the flow field like spray plume size, particle size distribution and volumetric flux, which is caused by the smaller enthalpy of evaporation and heat capacity comparing to water. Full version of this paper has been published as a journal article: Shufan Zou, Dezhi Zhou, Suo Yang, “Effects of Evaporation and Fuel Properties on Liquid Jets in Supersonic Crossflow: a Computational study using a compressible Eulerian-Lagrangian solver”, Atomization and Sprays 30 (9) (2020) 675-696. https://doi.org/10.1615/AtomizSpr.2020034860
Sun, Tong, Wilemski, Gerald, Hale, Barbara N., and Wyslouzil, Barbara E. The effects of methanol clustering on methanol–water nucleation. Retrieved from https://par.nsf.gov/biblio/10444784. The Journal of Chemical Physics 157.18 Web. doi:10.1063/5.0120876.
Sun, Tong, Wilemski, Gerald, Hale, Barbara N., & Wyslouzil, Barbara E. The effects of methanol clustering on methanol–water nucleation. The Journal of Chemical Physics, 157 (18). Retrieved from https://par.nsf.gov/biblio/10444784. https://doi.org/10.1063/5.0120876
Sun, Tong, Wilemski, Gerald, Hale, Barbara N., and Wyslouzil, Barbara E.
"The effects of methanol clustering on methanol–water nucleation". The Journal of Chemical Physics 157 (18). Country unknown/Code not available. https://doi.org/10.1063/5.0120876.https://par.nsf.gov/biblio/10444784.
@article{osti_10444784,
place = {Country unknown/Code not available},
title = {The effects of methanol clustering on methanol–water nucleation},
url = {https://par.nsf.gov/biblio/10444784},
DOI = {10.1063/5.0120876},
abstractNote = {The formation of subcritical methanol clusters in the vapor phase is known to complicate the analysis of nucleation measurements. Here, we investigate how this process affects the onset of binary nucleation as dilute water–methanol mixtures in nitrogen carrier gas expand in a supersonic nozzle. These are the first reported data for water–methanol nucleation in an expansion device. We start by extending an older monomer–dimer–tetramer equilibrium model to include larger clusters, relying on Helmholtz free energy differences derived from Monte Carlo simulations. The model is validated against the pressure/temperature measurements of Laksmono et al. [Phys. Chem. Chem. Phys. 13, 5855 (2011)] for dilute methanol–nitrogen mixtures expanding in a supersonic flow prior to the appearance of liquid droplets. These data are well fit when the maximum cluster size imax is 6–12. The extended equilibrium model is then used to analyze the current data. On the addition of small amounts of water, heat release prior to particle formation is essentially unchanged from that for pure methanol, but liquid formation proceeds at much higher temperatures. Once water comprises more than ∼24 mol % of the condensable vapor, droplet formation begins at temperatures too high for heat release from subcritical cluster formation to perturb the flow. Comparing the experimental results to binary nucleation theory is challenged by the need to extrapolate data to the subcooled region and by the inapplicability of explicit cluster models that require a minimum of 12 molecules in the critical cluster.},
journal = {The Journal of Chemical Physics},
volume = {157},
number = {18},
author = {Sun, Tong and Wilemski, Gerald and Hale, Barbara N. and Wyslouzil, Barbara E.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.