skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fully discrete error analysis of first‐order low regularity integrators for the Allen‐Cahn equation
Abstract The Allen‐Cahn equation satisfies the maximum bound principle, that is, its solution is uniformly bounded for all time by a positive constant under appropriate initial and/or boundary conditions. It has been shown recently that the time‐discrete solutions produced by low regularity integrators (LRIs) are likewise bounded in the infinity norm; however, the corresponding fully discrete error analysis is still lacking. This work is concerned with convergence analysis of the fully discrete numerical solutions to the Allen‐Cahn equation obtained based on two first‐order LRIs in time and the central finite difference method in space. By utilizing some fundamental properties of the fully discrete system and the Duhamel's principle, we prove optimal error estimates of the numerical solutions in time and space while the exact solution is only assumed to be continuous in time. Numerical results are presented to confirm such error estimates and show that the solution obtained by the proposed LRI schemes is more accurate than the classical exponential time differencing (ETD) scheme of the same order.  more » « less
Award ID(s):
2041884 2109633
PAR ID:
10445576
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Numerical Methods for Partial Differential Equations
Volume:
39
Issue:
5
ISSN:
0749-159X
Page Range / eLocation ID:
3594 to 3608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In contrast to the classical Allen-Cahn equation, the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier not only satisfies the maximum bound principle (MBP) and energy dissipation law but also ensures mass conservation. Many existing schemes often fail to preserve all these properties at the discrete level or require high regularity in time on the exact solution for convergence analysis. In this paper, we construct a new class of low regularity integrators (LRIs) for time discretization of the conservative Allen-Cahn equation by repeatedly using Duhamel's formula. The proposed first- and second-order LRI schemes are shown to conserve mass unconditionally and satisfy the MBP under some time step size constraints. Temporal error estimates for these schemes are derived under a low regularity assumption that the exact solution is only Lipschitz continuous in time, followed by a rigorous proof for energy stability of the corresponding time-discrete solutions. Various numerical experiments and comparisons in two and three dimensions are presented to verify the theoretical results and illustrate the performance of the LRI schemes, especially when the interfacial parameter approaches zero. 
    more » « less
  2. In this paper, we propose a linear second-order numerical method for solving the Allen-Cahn equation with general mobility. The fully-discrete scheme is achieved by using the Crank-Nicolson formula for temporal integration and the central difference method for spatial approximation, together with two additional stabilization terms. Under mild constraints on the two stabilizing parameters, the proposed numerical scheme is shown to unconditionally preserve the discrete maximum bound principle and the discrete original energy dissipation law. Error estimate in the 𝐿∞ norm is successfully derived for the proposed scheme. Finally, some numerical experiments are conducted to verify the theoretical results and demonstrate the performance of the proposed scheme in combination with an adaptive time-stepping strategy. 
    more » « less
  3. The Allen–Cahn equation is a semilinear PDE which is deeply linked to the theory of minimal hypersurfaces via a singular limit. We prove curvature estimates and strong sheet separation estimates for stable solutions (building on recent work of Wang–Wei) of the Allen-Cahn equation on a 3-manifold. Using these, we are able to show that for generic metrics on a 3-manifold, minimal surfaces arising from Allen–Cahn solutions with bounded energy and bounded Morse index are two-sided and occur with multiplicity one and the expected Morse index. This confirms, in the Allen–Cahn setting, a strong form of the multiplicity one-conjecture and the index lower bound conjecture of Marques–Neves in 3-dimensions regarding min-max constructions of minimal surfaces. Allen–Cahn min-max constructions were recently carried out by Guaraco and Gaspar–Guaraco. Our resolution of the multiplicity-one and the index lower bound conjectures shows that these constructions can be applied to give a new proof of Yau's conjecture on infinitely many minimal surfaces in a 3-manifold with a generic metric (recently proven by Irie–Marques–Neves) with new geometric conclusions. Namely, we prove that a 3-manifold with a generic metric contains, for every p = 1, 2, 3,…, a two-sided embedded minimal surface with Morse index p and area ~ p13, as conjectured by Marques-Neves. 
    more » « less
  4. In this paper, we propose and analyze a linear second-order numerical method for solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is carefully constructed based on the combination of first and second-order backward differentiation formulas with nonuniform time steps for temporal approximation and the central finite difference for spatial discretization. The discrete maximum bound principle is proved of the proposed scheme by using the kernel recombination technique under certain mild constraints on the time steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete H 1 H^{1} error estimate and energy stability for the classic constant mobility case and the L ∞<#comment/> L^{\infty } error estimate for the general mobility case. Various numerical experiments are also presented to validate the theoretical results and demonstrate the performance of the proposed method with a time adaptive strategy. 
    more » « less
  5. null (Ed.)
    We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme. 
    more » « less