skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Permutationally invariant polynomial representation of polarizability tensor surfaces for linear regression analysis
Abstract A linearly parameterized functional form for a Cartesian representation of molecular dipole polarizability tensor surfaces (PTS) is described. The proposed expression for the PTS is a linearization of the recently reported power series ansatz of the original Applequist model, which by construction is non‐linear in parameter space. This new approach possesses (i) a unique solution to the least‐squares fitting problem; (ii) a low level of the computational complexity of the resulting linear regression procedure, comparable to those of the potential energy and dipole moment surfaces; and (iii) a competitive level of accuracy compared to the non‐linear PTS model. Calculations of CH4PTS, with polarizabilities fitted to 9000 training set points with the energies up to 14,000 cm−1show an impressive level of accuracy of the linear PTS model obtained with ~1600 parameters: ~1% versus 0.3% RMSE for the non‐linear vs. linear model on a test set of 1000 configurations.  more » « less
Award ID(s):
1855583
PAR ID:
10445946
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
43
Issue:
22
ISSN:
0192-8651
Page Range / eLocation ID:
p. 1495-1503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The exact expressions for the dipole, quadrupole, and octupoles of a collection ofNpoint charges involve summations of corresponding tensors over theNsites weighted by their charge magnitudes. When the point charges are atoms (in a molecule) theN‐site formula is an approximation, and one must integrate over the electron density to recover the exact multipoles. In the present work we revisit theN(N + 1)/2‐site point charge density model of Hall (Chem. Phys. Lett.6, 501, 1973) for the purpose of fitting ab initio derived multipole moment hypersurfaces using permutationally invariant polynomials (PIP). We examine new approaches in PIP‐fitting procedures for the dipole, quadrupole, octupole moments, and polarizability tensor surfaces (DMS, QMS, OMS and PTS, respectively) for a non‐polar CCl4and a polar CHCl3and show that compared to the primitiveN‐site model theN(N + 1)/2‐site model appreciably improves the relative RMSE of the DMS and does much more substantially so, by an order of magnitude, for the corresponding ones of QMS and OMS. Training datasets are obtained by sampling potential energies up to 18 000 cm−1above the global minima, generated by molecular dynamics simulations at the DFT B3LYP/aug‐cc‐pVDZ level of theory. 
    more » « less
  2. We present molecular dynamics (MD), polarizability driven MD (α-DMD), and pump–probe simulations of Raman spectra of the protonated nitrogen dimer N4H+, and some of its isotopologues, using the explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)]-F12b/aug-cc-pVTZ based potential energy surface in permutationally invariant polynomials (PIPs) of Yu et al. [J. Phys. Chem. A 119, 11623 (2015)] and a corresponding PIP-derived CCSD(T)/aug-cc-pVTZ-tr (N:spd, H:sp) polarizability tensor surface (PTS), the latter reported here for the first time. To represent the PTS in terms of a PIP basis, we utilize a recently described formulation for computing the polarizability using a many-body expansion in the orders of dipole–dipole interactions while generating a training set using a novel approach based on linear regression for potential energy distributions. The MD/α-DMD simulations reveal (i) a strong Raman activity at 260 and 2400 cm−1, corresponding to the symmetric N–N⋯H bend and symmetric N–N stretch modes, respectively; (ii) a very broad spectral region in the 500–2000 cm−1 range, assignable to the parallel N⋯H+⋯N proton transfer overtone; and (iii) the presence of a Fermi-like resonance in the Raman spectrum near 2400 cm−1 between the Σg+ N–N stretch fundamental and the Πu overtone corresponding to perpendicular N⋯H+⋯N proton transfer. 
    more » « less
  3. Abstract Achieving durable lithium (Li) metal anodes in liquid electrolytes remains challenging, primarily due to the instability of the formed solid‐electrolyte interphases (SEIs). Modulating the Li‐ion solvation structures is pivotal in forming a stable SEI for stabilizing Li metal anodes. Here a strategy is developed to fine‐tune the Li‐ion solvation structures through enhanced dipole–dipole interactions between the Li‐ion‐coordinated solvent and the non‐Li‐ion‐coordinating diluent, for creating a stable SEI in the developed binary salt electrolyte. The enhanced dipole–dipole interactions weaken the coordination between Li‐ions and the solvents while strengthening the interaction between Li‐ions and dual anions, thereby facilitating the Li‐ion transport and a robust anion‐derived SEI with a distinct bilayer structure. Consequently, the developed electrolyte exhibited exceptional electrochemical performance in high energy‐density Li||LiNi0.8Mn0.1Co0.1O2 (NMC811) cells, with long calendar life, stable cyclability at 1 C, and reliable operation between 25 and −20 °C, and it also demonstrat remarkable cycling stability for a Li||NMC811 pouch cell with projected energy density of 402 Wh kg−1, maintaining 80% capacity retention over 606 cycles under practical conditions. 
    more » « less
  4. Abstract Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon. Significance StatementWe want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future. 
    more » « less
  5. Abstract Results are presented for the measurement of large-scale anisotropies in the arrival directions of ultra–high-energy cosmic rays detected at the Pierre Auger Observatory during 19 yr of operation, prior to AugerPrime, the upgrade of the observatory. The 3D dipole amplitude and direction are reconstructed above 4 EeV in four energy bins. Besides the established dipolar anisotropy in R.A. above 8 EeV, the Fourier amplitude of the 8–16 EeV energy bin is now also above the 5σdiscovery level. No time variation of the dipole moment above 8 EeV is found, setting an upper limit to the rate of change of such variations of 0.3% yr−1at the 95% confidence level. Additionally, the results for the angular power spectrum are shown, demonstrating no other statistically significant multipoles. The results for the equatorial dipole component down to 0.03 EeV are presented, using for the first time a data set obtained with a trigger that has been optimized for lower energies. Finally, model predictions are discussed and compared with observations, based on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.6 EeV. 
    more » « less