skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on April 1, 2024

Title: Spatio-temporal optical vortex (STOV) pulses
We review highlights of our recent contributions to understanding the propagation dynamics and transverse orbital angular momentum of optical pulses carrying spatiotemporal optical vortices (STOVs). STOVs, which were first observed as an emergent phenomenon in nonlinear self-focusing, were first linearly generated using a 4𝑓 pulse shaper and measured using transient-grating single-shot supercontinuum spectral interferometry (TG-SSSI). That STOV-based transverse orbital angular momentum (OAM) is carried at the single photon level was then confirmed in measurements of OAM conservation in second harmonic generation. Our recent theory for the electromagnetic mode structure and transverse OAM of STOVcarrying pulses in dispersive media predicts half-integer OAM and the existence of a transverse OAM-carrying quasiparticle: the bulk medium STOV polariton.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
David L. Andrews; Enrique J. Galvez; Halina Rubinsztein-Dunlop
Date Published:
Journal Name:
Proc. of SPIE Vol. 12436, 1243605 · 2023
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Light carries both spin angular momentum (SAM) and orbital angular momentum (OAM), which can be used as potential degrees of freedom for quantum information processing. Quantum emitters are ideal candidates towards on-chip control and manipulation of the full SAM–OAM state space. Here, we show coupling of a spin-polarized quantum emitter in a monolayerWSe2with the whispering gallery mode of aSi3N4ring resonator. The cavity mode carries a transverse SAM ofσ<#comment/>=±<#comment/>1in the evanescent regions, with the sign depending on the orbital power flow direction of the light. By tailoring the cavity–emitter interaction, we couple the intrinsic spin state of the quantum emitter to the SAM and propagation direction of the cavity mode, which leads to spin–orbit locking and subsequent chiral single-photon emission. Furthermore, by engineering how light is scattered from the WGM, we create a high-order Bessel beam which opens up the possibility to generate optical vortex carrying OAM states.

    more » « less
  2. Light fields carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical communications, microscopy, quantum optics, and microparticle manipulation. We introduce a property of light beams, manifested as a temporal OAM variation along a pulse: the self-torque of light. Although self-torque is found in diverse physical systems (i.e., electrodynamics and general relativity), it was not realized that light could possess such a property. We demonstrate that extreme-ultraviolet self-torqued beams arise in high-harmonic generation driven by time-delayed pulses with different OAM. We monitor the self-torque of extreme-ultraviolet beams through their azimuthal frequency chirp. This class of dynamic-OAM beams provides the ability for controlling magnetic, topological, and quantum excitations and for manipulating molecules and nanostructures on their natural time and length scales. 
    more » « less
  3. We utilize aperture diversity combined with multiple-mode receivers and multiple-input-multiple-output (MIMO) digital signal processing (DSP) to demonstrate enhanced tolerance to atmospheric turbulence and spatial misalignment in a 10 Gbit/s quadrature-phase-shift-keyed (QPSK) free-space optical (FSO) link. Turbulence and misalignment could cause power coupling from the fundamental Gaussian mode into higher-order modes. Therefore, we detect power from multiple modes and use MIMO DSP to enhance the recovery of the original data. In our approach, (a) each of multiple transmitter apertures transmits a single fundamental Gaussian beam carrying the same data stream, (b) each of multiple receiver apertures detects the signals that are coupled from the fundamental Gaussian beams to multiple orbital angular momentum (OAM) modes, and (c) MIMO DSP is used to recover the data over multiple modes and receivers. Our simulation shows that the outage probability could be reduced from><#comment/>0.1to<<#comment/>0.01. Moreover, we experimentally demonstrate the scheme by transmitting two fundamental Gaussian beams carrying the same data stream and recovering the signals on OAM modes 0 and+1at each receiver aperture. We measure an up to∼<#comment/>10dBpower-penalty reduction for a bit error rate (BER) at the 7% forward error correction limit for a 10 Gbit/s QPSK signal.

    more » « less
  4. Abstract

    The generation of rapidly tunable optical vortex (OV) beams is one of the most demanding research areas of the present era as they possess orbital angular momentum (OAM) with additional degrees of freedom that can be exploited to enhance signal‐carrying capacity by using mode division multiplexing and information encoding in optical communication. Particularly, rapidly tunable OAM devices at a fixed wavelength in the telecom band stir extensive interest among researchers for both classical and quantum applications. This article demonstrates the realistic design of a Si‐integrated photonic device for rapidly tunable OAM wave generation at a 1550‐nm wavelength by using an ultra‐low‐loss phase change material (PCM) embedded with a Si‐ring resonator with angular gratings. Different OAM modes are achieved by tuning the effective refractive index using rapid electrical switching of Sb2Se3 film from amorphous to crystalline states and vice versa. The generation of OAM waves relies on a traveling wave modulation of the refractive index of the micro‐ring, which breaks the degeneracy of oppositely oriented whispering gallery modes. The proposed device is capable of producing rapidly tunable OV beams, carrying different OAM modes by using electrically controllable switching of ultra‐low‐loss PCM Sb2Se3.

    more » « less
  5. A spatiotemporal optical vortex (STOV) is an intrinsic optical orbital angular momentum (OAM) structure in which the OAM vector is orthogonal to the propagation direction [Optica6,1547(2019)OPTIC82334-253610.1364/OPTICA.6.001547] and the optical phase circulates in space-time. Here, we experimentally and theoretically demonstrate the generation of the second harmonic of a STOV-carrying pulse along with the conservation of STOV-based OAM. Our experiments verify that photons can have intrinsic orbital angular momentum perpendicular to their propagation direction.

    more » « less