skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanolayered attributes of calcium‐silicate‐hydrate gels
Abstract Calcium‐silicate‐hydrates (C–S–H) gel, the main binding phase in cementitious materials, has a complex multiscale texture. Despite decades of intensive research, the relation between C–S–H's chemical composition and mesoscale texture remains experimentally limited to probe and theoretically elusive to comprehend. While the nanogranular texture explains a wide range of experimental observations, understanding the fundamental processes that control particles’ size and shape are still obscure. This paper strives to establish a link between the chemistry of C–S–H nanolayers at the molecular level and formation of C–S–H globules at the mesoscale via the potential‐of‐mean‐force (PMF) coarse‐graining approach. We propose a new thermomechanical load‐cycling scheme that effectively packs polydisperse coarse‐grained nanolayers and creates representative C–S–H gel structures at various packing densities. We find that the C–S–H nanolayers percolate at ~10% packing fraction, significantly below the percolation of ideal hard contact oblate particles and rather close to that of overlapping ellipsoids. The agglomeration of C–S–H nanolayers leads to the formation of globular clusters with the effective thickness of ~5 nm, in striking agreement with small angle neutron and X‐ray scattering measurements as well as nanoscale imaging observations. The study of pore structure and local packing distribution in the course of densification shows a transition from a connected pore network to isolated nanoporosity. Furthermore, the calculated mechanical properties are in excellent agreement with statistical nanoindentation experiments, positioning nanolayered morphology as a finer description of C–S–H globule models. Such high‐resolution description becomes indispensable when investigating phenomena that involve internal building blocks of globules such as shrinkage and creep.  more » « less
Award ID(s):
1825921
PAR ID:
10447389
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
103
Issue:
1
ISSN:
0002-7820
Format(s):
Medium: X Size: p. 541-557
Size(s):
p. 541-557
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We elucidate the mechanisms by which multi-walled carbon nanotubes (MWCNTs) influence the microstructure, fracture behavior, and hydration of cement paste. We disperse MWCNTs using a multi-step approach that involves high-energy pre-dispersion using ultrasonic energy followed by low-energy dispersion using un-hydrated cement particles. In turn, the low-energy dispersion step involves high-shear mixing and mechanical stirring. High-resolution environmental scanning electron microscopy of cement+0.2 wt% MWCNT, cement+0.5 wt% MWNCT, and of cement+1 wt% MWCNT show that MWCNTs bridge air voids, thereby refining the pore size and strengthening the C-S-H matrix. The fracture toughness increased by 9.38% with the addition of 0.2 wt% multi-walled carbon nanotubes, and by 14.06% with the addition of 0.5 wt% multi-walled carbon nanotubes and ligament bridging was the dominant toughening mechanism. Moreover, for all reinforcement levels, MWCNTs induced a conversion of low-density C-S-H into high-density C-S-H along with a drastic drop in the capillary porosity: adding 0.1–0.5 wt% MWCNT resulted in a 200% increase in the volume fraction of high-density C-S-H. Thus, our experiments show that MWCNT enhances the mechanical properties and transport properties by: (i) promoting high-density C-S-H formation, (ii) promoting calcium hydroxide formation, (iii) filling microscopic air voids, (iv) reducing the capillary porosity, (v) increasing the fraction of small gel pores (1.2–2 nm in size), and (vi) by bridging microcracks. 
    more » « less
  2. Abstract Granular hydrogels show great promise in biomedical applications by mimicking the extracellular matrix and fostering a supportive microenvironment for tissue regeneration. This study investigates how tuning granular hydrogel properties influences lymphatic tube formation. Microgels were fabricated using norbornene‐modified hyaluronic acid (NorHA) via pipetting or vortexing for 90 s (V90s) and 180 s (V180s), then assembled into granular hydrogels under loose and tight packing conditions. These conditions produced gels with varied pore morphologies and bulk rheological properties. Lymphatic capillary formation occurred only in tightly packed gels, where mechanical properties converged, highlighting the importance of gel morphology over stiffness. V180s samples showed earlier vessel formation as seen in lymphatic gene and protein expression, while pipetted gels exhibited greater capillary connectivity, forming larger vessel clusters and fewer small satellite structures. The pipetting gels also supported lower‐curvature, more linear capillary networks that bridged multiple droplets, likely due to reduced entrapment in large voids compared to vortexed gels. These findings suggest that in bulk granular gels, lymphatic tube formation is governed not by mechanical stiffness but by pore size and gel topology (periodicity). Understanding and optimizing these morphological parameters can inform future strategies in lymphatic tissue engineering and regenerative medicine. 
    more » « less
  3. null (Ed.)
    In this study, in situ quasi-elastic neutron scattering (QENS) has been employed to probe the water dynamics and reaction mechanisms occurring during the formation of NaOH- and Na 2 SiO 3 -activated slags, an important class of low-CO 2 cements, in conjunction with isothermal conduction calorimetry (ICC), Fourier transform infrared spectroscopy (FTIR) analysis and N 2 sorption measurements. We show that the single ICC reaction peak in the NaOH-activated slag is accompanied with a transformation of free water to bound water (from QENS analysis), which directly signals formation of a sodium-containing aluminum-substituted calcium–silicate–hydrate (C–(N)–A–S–H) gel, as confirmed by FTIR. In contrast, the Na 2 SiO 3 -activated slag sample exhibits two distinct reaction peaks in the ICC data, where the first reaction peak is associated with conversion of constrained water to bound and free water, and the second peak is accompanied by conversion of free water to bound and constrained water (from QENS analysis). The second conversion is attributed to formation of the main reaction product ( i.e. , C–(N)–A–S–H gel) as confirmed by FTIR and N 2 sorption data. Analysis of the QENS, FTIR and N 2 sorption data together with thermodynamic information from the literature explicitly shows that the first reaction peak is associated with the formation of an initial gel (similar to C–(N)–A–S–H gel) that is governed by the Na + ions and silicate species in Na 2 SiO 3 solution and the dissolved Ca/Al species from slag. Hence, this study exemplifies the power of in situ QENS, when combined with laboratory-based characterization techniques, in elucidating the water dynamics and associated chemical mechanisms occurring in complex materials, and has provided important mechanistic insight on the early-age reactions occurring during formation of two alkali-activated slags. 
    more » « less
  4. In recent years, carbon nanofibers have been investigated as a suitable reinforcement for cementitious composites to yield novel multifunctional materials with improved mechanical, electrical, magnetic, and self-sensing behavior. Despite several studies, the interactions between carbon nanofibers and Portland cement hydration products are not fully understood, with significant implications for the mechanical response and the durability at the macroscopic lengthscale. Thus, the research objective is to investigate the influence of carbon nanofibers on the nanostructure and on the distribution of hydration products within Portland cement paste. Portland cement w/c = 0.44 specimens reinforced with 0.0 wt%, 0.1 wt%, and 0.5 wt% CNF by mass fraction of cement are cast using a novel synthesis procedure. A uniform dispersion of carbon nanofibers (CNF) via a multi-step approach: after pre-dispersing carbon nanofibers using ultrasonic energy, the carbon nanofibers are further dispersed using un-hydrated cement particles in high shear mixing and mechanical stirring steps. High-resolution scanning electron microscopy analysis shows that carbon nanofibers fill nanopores and connect calcium–silicate hydrates (C–S–H) grains. Grid nano-indentation testing shows that Carbon nanofibers influence the probability distribution function of the local packing density by inducing a shift towards higher values, η = 0.76–0.93. Statistical deconvolution analysis shows that carbon nanofibers result in an increase in the fraction of high-density C–S–H by 6.7% from plain cement to cement + 0.1 wt% CNF and by 10.7% from plain cement to cement + 0.5 wt% CNF. Moreover, CNF lead to an increase in the C–S–H gel porosity and a decrease in both the capillary porosity and the total porosity. Based on scratch testing, adding 0.1 wt% CNF yields a 4.5% increase in fracture toughness and adding 0.5 wt% CNF yields a 7.6% increase in fracture toughness. Finally, micromechanical modelling predicts an increase of respectively 5.97% and 21.78% in the average Young’s modulus following CNF modification at 0.1 wt% CNF and 0.5 wt% CNF levels. 
    more » « less
  5. Coupling of organic and inorganic chemistry presents a new degree of freedom in nano-engineering of thermo-mechanical properties of cement-based materials. Despite these vast technological benefits, molecular scale cross-linking of calcium-silicate-hydrate (C-S-H) gel with organic molecules still presents a significant challenge. Herein, we report experimental results on sol-gel synthesis, structure and morphology of nanocrystalline C-S-H cross-linked with dipodal organosilanes. These novel organic-inorganic gels have layered turbostratic molecular structure with similarities to C-S-H precipitating in hydrating cement paste. The organic molecules' chain length controls the interlayer spacing, which shows little to no shrinkage upon dehydration up to 105 °C. However, the structure gets distorted in the basal crystallite plane, in which dimer and trimer Si-polyhedra structures condense on a 2D hexagonal Ca-polyhedra layer. Cross-linked C-S-H gels display plate-like morphology with tendency toward stacking into agglomerates at the larger scale. If successfully realized in cement environment, e.g. high concentration seed, such novel organic-inorganic C-S-H gels could potentially provide cement-based matrices with unique properties unmatched by classical inorganic systems. 
    more » « less