skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Additive and interactive effects of anthropogenic stressors on an insect herbivore
The pressures of global change acting on wild plants and animals include exposure to environmental toxins, the introduction of non-native species, and climate change. Relatively few studies have been reported in which these three main classes of stressors have been examined simultaneously, allowing for the possibility of synergistic effects in an experimental context. In this study, we exposed caterpillars of the Melissa blue butterfly ( Lycaeides melissa ) to three concentrations of chlorantraniliprole, under three experimental climates, on a diet of a native or a non-native host plant throughout larval development in a fully factorial experiment. We find that high pesticide exposure and a non-native diet exhibit strong negative effects on caterpillars, resulting in 62% and 42% reduction in survival, respectively, while interactive effects tend to be weaker, ranging from 15% to 22% reduction in survival. Interactive effects have been shown to be strong in other contexts, but do not appear to be universal; however, our study shows that the cumulative effects of stressors acting in isolation (additively) are sufficiently strong to severely reduce survival and by extension population persistence in the wild.  more » « less
Award ID(s):
2114793
PAR ID:
10447797
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
1996
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Species interactions are expected to change in myriad ways as the frequency and magnitude of extreme temperature events increase with anthropogenic climate change.The relationships between endosymbionts, parasites and their hosts are particularly sensitive to thermal stress, which can have cascading effects on other trophic levels.We investigate the interactive effects of heat stress and parasitism on a terrestrial tritrophic system consisting of two host plants (one common, high‐quality plant and one novel, low‐quality plant), a caterpillar herbivore and a specialist parasitoid wasp.We used a fully factorial experiment to determine the bottom‐up effects of the novel host plant on both the caterpillars' life history traits and the wasps' survival, and the top‐down effects of parasitism and heat shock on caterpillar developmental outcomes and herbivory levels.Host plant identity interacted with thermal stress to affect wasp success, with wasps performing better on the low‐quality host plant under constant temperatures but worse under heat‐shock conditions.Surprisingly, caterpillars consumed less leaf material from the low‐quality host plant to reach the same final mass across developmental outcomes.In parasitized caterpillars, heat shock reduced parasitoid survival and increased both caterpillar final mass and development time on both host plants.These findings highlight the importance of studying community‐level responses to climate change from a holistic and integrative perspective and provide insight into potential substantial interactions between thermal stress and diet quality in plant–insect systems. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Maternally transmitted microbes are ubiquitous. In insects, maternal microbes can play a role in mediating the insect immune response. Less is known about how ecological factors, such as resource use, interact with maternal microbes to affect immunity.In the context of a recent colonization of a novel host plant by the Melissa blue butterflyLycaeides melissa, we investigated the interaction between host plant use and vertically transmitted, extracellular egg‐associated microbes in determining the strength of the insect immune response.We reared larvae on two different host plant species: a native hostAstragalus canadensisand a novel hostMedicago sativa. Egg‐associated microbes were removed through a series of antimicrobial egg washes prior to hatching. Immune response was measured through three assays: standing phenoloxidase (PO), total PO and melanization.We detected strong effects of microbial removal. Egg washing resulted in larvae with an increased immune response as measured by total PO—contrary to reports from other taxa. The effect of washing was especially strong for larvae consuming the native host plant.This result may explain why consumption of the egg casing is not a universal behaviour in insects, due to negative effects on larval immunity. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract Plant–insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome‐ or metabolome‐scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant–insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome‐wide genetic variation in the model plantMedicago truncatulaforLycaeides melissacaterpillar growth and survival (larval performance). Using a rearing experiment and a whole‐genome SNP data set (>5 million SNPs), we found that polygenic variation inM. truncatulaexplains 9%–41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multipleM. truncatulaalleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect ofM. truncatulaalleles onL. melissaperformance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation inM. truncatulahas a substantial effect on the successful development ofL. melissacaterpillars (i.e., on a plant–insect interaction), and further point toward traits potentially mediating this genetic effect. 
    more » « less
  4. Established non-native species can have significant impacts on native biodiversity without any possibility of complete eradication. In such cases, one management approach is functional eradication, the reduction of introduced species density below levels that cause unacceptable effects on the native community. Functional eradication may be particularly effective for species with reduced dispersal ability, which may limit rates of reinvasion from distant populations. Here, we evaluate the potential for functional eradication of introduced predatory oyster drills (Urosalpinx cinerea) using a community science approach in San Francisco Bay. We combined observational surveys, targeted removals, and a caging experiment to evaluate the effectiveness of this approach in mitigating the mortality of prey Olympia oysters (Ostrea lurida), a conservation and restoration priority species. Despite the efforts of over 300 volunteers that removed over 30,000 oyster drills, we report limited success. We also found a strong negative relationship between oyster drills and oysters, showing virtually no coexistence across eight sites. At experimental sites, there was no effect of oyster drill removal on oyster survival in a caging experiment, but strong effects of caging treatment on oyster survival (0 and 1.6% survival in open and partial cage treatments, as compared to 89.1% in predator exclusion treatments). We conclude that functional eradication of this species requires significantly greater effort and may not be a viable management strategy in this system. We discuss several possible mechanisms for this result with relevance to management for this and other introduced species. Oyster restoration efforts should not be undertaken where Urosalpinx is established or is likely to invade. 
    more » « less
  5. Abstract Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly,Euphydryas phaeton(Nymphalidae), have recently incorporated an exotic plant,Plantago lanceolata(Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus,Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field‐collected caterpillars using eitherP.lanceolataor a native plant,Chelone glabra(Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the “vulnerable host” hypothesis) from a field‐based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus‐infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies. 
    more » « less