skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topographically Generated Submesoscale Shear Instabilities Associated with Brazil Current Meanders
Abstract The western boundary current system off southeastern Brazil is composed of the poleward-flowing Brazil Current (BC) in the upper 300 m and the equatorward flowing Intermediate Western Boundary Current (IWBC) underneath it, forming a first-baroclinic mode structure in the mean. Between 22° and 23°S, the BC-IWBC jet develops recurrent cyclonic meanders that grow quasi-stationarily via baroclinic instability, though their triggering mechanisms are not yet well understood. Our study, thus, aims to propose a mechanism that could initiate the formation of these mesoscale eddies by adding the submesoscale component to the hydrodynamic scenario. To address this, we perform a regional 1/50° (∼2 km) resolution numerical simulation using CROCO (Coastal and Regional Ocean Community model). Our results indicate that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instability that can trigger the meanders’ formation. Subsequently, this process generates submesoscale cyclones that contribute, along with baroclinic instability, to the meanders’ growth, resulting in a submesoscale-to-mesoscale inverse cascade. Last, as the mesoscale cyclones grow, they interact with the slope, generating inertially and symmetrically unstable anticyclonic submesoscale vortices and filaments. Significance Statement Off southeastern Brazil, the Brazil Current develops recurrent cyclonic meanders. Such meanders enhance the open-ocean primary productivity and are of societal importance as they are located in a region rich in oil and gas where oil-spill accidents have already happened. This study aims to explore the processes responsible for triggering the formation of these mesoscale eddies. We find that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instabilities that eject submesoscale filaments and vortices and can trigger the meanders’ formation. Such results show that topographically generated submesoscale instabilities can play an important role in the dynamics of mesoscale meanders off southeastern Brazil. Moreover, this may indicate that resolving the submesoscale dynamics in operational numerical models may contribute to an increase in the predictability of the regional eddies.  more » « less
Award ID(s):
1755313
PAR ID:
10447877
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
53
Issue:
7
ISSN:
0022-3670
Page Range / eLocation ID:
1669 to 1689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite the ubiquity of eddies at the Mid‐Atlantic Bight shelf‐break front, direct observations of frontal eddies at the shelf‐break front are historically sparse and their biological impact is mostly unknown. This study combines high resolution physical and biological snapshots of two frontal eddies with an idealized 3‐D regional model to investigate eddy formation, kinematics, upwelling patterns, and biological impacts. During May 2019, two eddies were observed in situ at the shelf‐break front. Each eddy showed evidence of nutrient and chlorophyll enhancement despite rotating in opposite directions and having different physical characteristics. Our results suggest that cyclonic eddies form as shelf waters are advected offshore and slope waters are advected shoreward, forming two filaments that spiral inward until sufficient water is entrained. Rising isohalines and upwelled slope water dye tracer within the model suggest that upwelling coincided with eddy formation and persisted for the duration of the eddy. In contrast, anticyclonic eddies form within troughs of the meandering shelf‐break front, with amplified frontal meanders creating recirculating flow. Upwelling of subsurface shelf water occurs in the form of detached cold pool waters during the formation of the anticyclonic eddies. The stability properties of each eddy type were estimated via the Burger number and suggest different ratios of baroclinic versus barotropic contributions to frontal eddy formation. Our observations and model results indicate that both eddy types may persist for more than a month and upwelling in both eddy types may have significant impacts on biological productivity of the shelf break. 
    more » « less
  2. Recent studies suggest that the South Brazil Bight (SBB) hosts strong westward propagating mesoscale eddies. We use 28 years of satellite altimetry data and a new Eddy Atlas to estimate how much of the eddy kinetic energy (EKE) observed in the SBB is accounted for by local eddies, generated in the Brazil Current (BC) region, versus remote eddies generated eastward of the BC region. First, we estimate a BC frontal density to obtain a robust definition of BC region. The BC front is well-defined throughout the SBB, occupying the region between the 200-m and 1000-m isobath, except in eddy hotspots downstream of sharp inflections of the continental slope, where the EKE far exceeds the mean kinetic energy (MKE). Compact, closed-contour mesoscale eddies account for 30–50% of the total EKE observed in the SBB, with local eddies accounting for most of the compact EKE in the BC region, defined as the area within 200 km of the 28-year mean BC front. Remote compact eddies account for less than 10% of the EKE observed in the BC region; compact eddies generated at long distances from the SBB, including eddies generated in the Southeastern Atlantic, contribute an insignificant fraction of EKE in the BC region. 
    more » « less
  3. Abstract Submesoscale coherent vortices (SCVs) are long‐lived subsurface‐intensified eddies that advect heat, salt, and biogeochemical tracers throughout the ocean. Previous observations indicate that SCVs are abundant in the Arctic because sea ice suppresses surface‐intensified mesoscale structures. Regional observational and modeling studies have indicated that SCVs may be similarly prevalent beneath Antarctic sea ice, but there has been no previous systematic attempt to observe these eddies. This study presents the discovery of eddies in the Southern Ocean's seasonally sea ice‐covered region using the Marine Mammals Exploring the Oceans Pole to Pole (MEOP) hydrographic measurements. Eddies are identified via a novel algorithm that utilizes anomalies in spice, isopycnal separation, and dynamic height along MEOP seal tracks. This algorithm is tested and calibrated by simulating the MEOP seal tracks using output from a 1/48 global ocean/sea ice model, in which subsurface eddies are independently identified via the Okubo–Weiss parameter. Approximately 60 detections of cyclonic and over 100 detections of anticyclonic SCVs are identified, with typical dynamic height anomalies of , core depths of , and vertical half‐widths of , similar to their Arctic counterparts. The eddies exhibit a pronounced geographical asymmetry: cyclones are exclusively observed in the open ocean, while 90% of the anticyclones are located on the continental shelf, consistent with injection of low‐potential vorticity waters by surface buoyancy loss. These findings provide a first observational characterization of eddies in the seasonally ice‐covered Southern Ocean, which will serve as a basis for future investigation of their role in near‐Antarctic circulation and tracer transport. 
    more » « less
  4. Abstract The California Current System is characterized by upwelling and rich mesoscale eddy activity. Cyclonic eddies generally pinch off from meanders in the California Current, potentially trapping upwelled water along the coast and transporting it offshore. Here, we use satellite-derived measurements of particulate organic carbon (POC) as a tracer of coastal water to show that cyclones located offshore that were generated near the coast contain higher carbon concentrations in their interior than cyclones of the same amplitude generated offshore. This indicates that eddies are in fact trapping and transporting coastal water offshore, resulting in an offshore POC enrichment of 20.9 ± 11 Gg year−1. This POC enrichment due to the coastally-generated eddies extends for 1000 km from shore. This analysis provides large-scale observational-based evidence that eddies play a quantitatively important role in the offshore transport of coastal water, substantially widening the area influenced by highly productive upwelled waters in the California Current System. 
    more » « less
  5. Abstract The Beaufort Gyre (BG) is hypothesized to be partially equilibrated by those mesoscale eddies that form via baroclinic instabilities of its currents. However, our understanding of the eddy field’s dependence on the mean BG currents and the role of sea ice remains incomplete. This theoretical study explores the scales and vertical structures of eddies forming specifically due to baroclinic instabilities of interior BG flows. An idealized quasi-geostrophic model is used to show that flows driven only by the Ekman pumping contain no interior potential vorticity (PV) gradients and generate weak and large eddies, ℴ(200km) in size, with predominantly barotropic and first baroclinic mode energy. However, flows containing realistic interior PV gradients in the Pacific halocline layer generate significantly smaller eddies of about 50 km in size, with a distinct second baroclinic mode structure and a subsurface kinetic energy maximum. The dramatic change in eddy characteristics is shown to be caused by the stirring of interior PV gradients by large-scale barotropic eddies. The sea ice-ocean drag is identified as the dominant eddy dissipation mechanism, leading to realistic sub-surface maxima of eddy kinetic energy for drag coefficients higher than about 2×10 −3 . A scaling law is developed for the eddy potential enstrophy, demonstrating that it is directly proportional to the interior PV gradient and the square root of the barotropic eddy kinetic energy. This study proposes a possible formation mechanism of large BG eddies and points to the importance of accurate representation of the interior PV gradients and eddy dissipation by ice-ocean drag in BG simulations and theory. 
    more » « less