skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Stratification Breakdown in Antarctic Coastal Polynyas. Part I: Influence of Physical Factors on the Destratification Time Scale
Abstract

This study examines the process of water-column stratification breakdown in Antarctic coastal polynyas adjacent to an ice shelf with a cavity underneath. This first part of a two-part sequence seeks to quantify the influence of offshore katabatic winds, alongshore winds, air temperature, and initial ambient stratification on the time scales of polynya destratification through combining process-oriented numerical simulations and analytical scaling. In particular, the often-neglected influence of wind-driven circulation on the lateral transport of the water formed at the polynya surface—which we call Polynya Source Water (PSW)—is systematically examined here. First, an ice shelf–sea ice–ocean coupled numerical model is adapted to simulate the process of PSW formation in polynyas of various configurations. The simulations highlight that (i) before reaching the bottom, majority of the PSW is actually carried away from the polynya by katabatic wind–induced offshore outflow, diminishing water-column mixing in the polynya and intrusion of the PSW into the neighboring ice shelf cavity, and (ii) alongshore coastal easterly winds, through inducing onshore Ekman transport, reduce offshore loss of the PSW and enhance polynya mixing and PSW intrusion into the cavity. Second, an analytical scaling of the destratification time scale is derived based on fundamental physical principles to quantitatively synthesize the influence of the physical factors, which is then verified by independent numerical sensitivity simulations. This work provides insights into the mechanisms that drive temporal and cross-polynya variations in stratification and PSW formation in Antarctic coastal polynyas, and establishes a framework for studying differences among the polynyas in the ocean.

 
more » « less
Award ID(s):
1643901 2205008
NSF-PAR ID:
10448372
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
53
Issue:
9
ISSN:
0022-3670
Page Range / eLocation ID:
p. 2047-2067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This is Part II of a study examining wintertime destratification in Antarctic coastal polynyas, focusing on providing a qualitative description of the influence of ice tongues and headlands, both common geometric features neighboring the polynyas. The model of a coastal polynya used in Part I is modified to include an ice tongue and a headland to investigate their impacts on the dispersal of water formed at the polynya surface, which is referred to as Polynya Source Water (PSW) here. The model configuration qualitatively represents the settings of some coastal polynyas, such as the Terra Nova Bay Polynya. The simulations highlight that an ice tongue next to a polynya tends to break the alongshore symmetry in the lateral return flows toward the polynya, creating a stagnant region in the corner between the ice tongue and polynya where outflow of the PSW in the water column is suppressed. This enhances sinking of the PSW and accelerates destratification of the polynya water column. Adding a headland to the other side of the polynya tends to restore the alongshore symmetry in the lateral return flows, which increases the offshore PSW transport and slows down destratification in the polynya. This work stresses the importance of resolving small-scale geometric features in simulating vertical mixing in the polynya. It provides a framework to explain spatial and temporal variability in rates of destratification and Dense Shelf Water formation across Antarctic coastal polynyas, and helps understand why some polynyas are sources of Antarctic Bottom Water while others are not.

     
    more » « less
  2. Abstract

    Antarctic coastal polynyas are hotspots of biological production with intensive springtime phytoplankton blooms that strongly depend on meltwater‐induced restratification in the upper part of the water column. However, the fundamental physics that determine spatial inhomogeneity of the spring restratification remain unclear. Here, we investigate how different meltwaters affect springtime restratification and thus phytoplankton bloom in Antarctic coastal polynyas. A high‐resolution coupled ice‐shelf/sea‐ice/ocean model is used to simulate an idealized coastal polynya similar to the Terra Nova Bay Polynya, Ross Sea, Antarctica. To evaluate the contribution of various meltwater sources, we conduct sensitivity simulations altering physical factors such as alongshore winds, ice shelf basal melt, and surface freshwater runoff. Our findings indicate that sea ice meltwater from offshore is the primary buoyancy source of polynya near‐surface restratification, particularly in the outer‐polynya region where chlorophyll concentration tends to be high. Downwelling‐favorable alongshore winds can direct offshore sea ice away and prevent sea ice meltwater from entering the polynya region. Although the ice shelf basal meltwater can ascend to the polynya surface, much of it is mixed vertically over the water column and confined horizontally to a narrow coastal region, and thus does not contribute significantly to the polynya near‐surface restratification. Surface runoff from ice shelf surface melt could contribute greatly to the polynya near‐surface restratification. Nearby ice tongues and headlands strongly influence the restratification through modifying polynya circulation and meltwater transport pathways. Results of this study can help explain observed spatiotemporal variability in restratification and associated biological productivity in Antarctic coastal polynyas.

     
    more » « less
  3. Abstract

    Over the Ross Sea shelf, annual primary production is limited by dissolved iron (DFe) supply. Here, a major source of DFe to surface waters is thought to be vertical resupply from the benthos, which is assumed most prevalent during winter months when katabatic winds drive sea ice formation and convective overturn in coastal polynyas, although the impact of these processes on water‐column DFe distributions has not been previously documented. We collected hydrographic data and water‐column samples for trace metals analysis in the Terra Nova Bay and Ross Ice Shelf polynyas during April–May 2017 (late austral fall). In the Terra Nova Bay polynya, we observed intense katabatic wind events, and surface mixed layer depths varied from ∼250 to ∼600 m over lateral distances <10 km; there vertical mixing was just starting to excavate the dense, iron‐rich Shelf Waters, and there was also evidence of DFe inputs at shallower depths in the water column. In the Ross Ice Shelf polynya, wind speeds were lower, mixed layers were <300 m deep, and DFe distributions were similar to previous, late‐summer observations, with concentrations elevated near the seafloor. Corresponding measurements of dissolved manganese and zinc, and particulate iron, manganese, and aluminum, suggest that deep DFe maxima and some mid‐depth DFe maxima primarily reflect sedimentary inputs, rather than remineralization. Our data and model simulations imply that vertical resupply of DFe in the Ross Sea occurs mainly during mid‐late winter, and may be particularly sensitive to changes in the timing and extent of sea ice production.

     
    more » « less
  4. Abstract

    This study examines the link between near-bottom outflows of dense water formed in Antarctic coastal polynyas and onshore intrusions of Circumpolar Deep Water (CDW) through prograde troughs cutting across the continental shelf. Numerical simulations show that the dense water outflow is primarily in the form of cyclonic eddies. The trough serves as a topographic guide that organizes the offshore-moving dense water eddies into a chain pattern. The offshore migration speed of the dense water eddies is similar to the velocity of the dense water offshore flow in the trough, which scaling analysis finds to be proportional to the reduced gravity of the dense water and the slope of the trough sidewalls and to be inversely proportional to the Coriolis parameter. Our model simulations indicate that, as these cyclonic dense water eddies move across the trough mouth into the deep ocean, they entrain CDW from offshore and carry CDW clockwise along their periphery into the trough. Subsequent cyclonic dense water eddies then entrain the intruding CDW further toward the coast along the trough. This process of recurring onshore entrainment of CDW by a topographically constrained chain of offshore-flowing dense water eddies is consistent with topographic hotspots of onshore intrusion of CDW around Antarctica identified by other studies. It can bring CDW from offshore to close to the coast and thus impact the heat flux into Antarctic coastal regions, affecting interactions among ocean, sea ice, and ice shelves.

    Significance Statement

    Troughs cutting across the Antarctic continental shelf are a major conduit for the transport of dense shelf water from coastal formation regions to the shelf break. This study describes a process in which clockwise-spinning eddies moving offshore in prograde troughs successively entrain filaments of relatively warm Circumpolar Deep Water from offshore across the entire shelf and into the coastal region. This eddy-induced transport provides a new understanding of the shelf edge exchange process identified in previous studies and a mechanism for further onshore intrusion of the warm Circumpolar Deep Water over parts of the Antarctic shelf. The resultant onshore heat flux could potentially bring a substantial amount of heat from offshore into the coastal region and thus affect ice–ocean interactions through melting sea ice and ice shelves.

     
    more » « less
  5. Abstract Coastal polynyas in Antarctica are a window of air-sea energy exchange and an important source of Antarctic Bottom Water production. However, the relationship between the polynya area variation and the surrounding marine environment is yet to be fully understood. Here we quantify the influence of the volume of transiting consolidated ice on the Terra Nova Bay Polynya area with ice thickness data. Changes in transiting consolidated ice volume are shown to dominate the evolution and variation of the polynya during a typical polynya shrinking event that occurred between 19 June to 03 July, 2013, rather than katabatic winds or air temperature, which are commonly assumed to be the main drivers. Over the cold seasons from 2013 to 2020, the Terra Nova Bay Polynya area is highly correlated to the transiting consolidated ice volume. We demonstrate that thick transiting ice limits the polynya area by blocking the newly-formed sea ice from leaving. 
    more » « less