skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Optical Switching on Subpicosecond Timescales in an Amorphous Ge Metamaterial
Abstract Active nanostructured optical components show promise as potential building blocks for novel light‐based computing and data processing architectures. However, nanoscale all‐optical switches that have low activation powers and high‐contrast ultrafast switching have been elusive so far. Here, pump–probe measurements performed on amorphous‐Ge‐based micro‐resonator metasurfaces that exhibit strong resonant modes in the mid‐infrared are reported. Relative change is observed in transmittance of ΔT/T ≈ 1 with picosecond (down to τ ≈ 0.5 ps) free carrier relaxation rates, obtained with very low pump fluences of 50 μJ cm−2. These observations are attributed to efficient free carrier promotion, affecting light transmittance via high quality‐factor optical resonances, followed by an increased electron–phonon scattering of free carriers due to the amorphous crystal structure of Ge. Full‐wave simulations based on a permittivity model that describes free‐carrier damping through crystal structure disorder find excellent agreement with the experimental data. These findings offer an efficient and robust platform for all‐optical switching at the nanoscale.  more » « less
Award ID(s):
1719875
PAR ID:
10449379
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
9
Issue:
15
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract All‐optical control and detection of magnetic states for high‐density recording necessitate nanophotonic approaches to amplify local light intensity below the diffraction limit. Sculpting the near‐field phase and polarization can additionally strengthen magneto‐optical effects that rely on circularly polarized pulses, such as all‐optical helicity‐dependent switching, imaging, and spin‐wave excitation. Here, high‐refractive‐index dielectric nanoantennas illuminated with circularly polarized light resonantly enhance local electric field rotation by more than sixfold within [Pt/Co]Nthin films. Sub‐wavelength arrays of amorphous Si nanodisks, or metasurfaces, patterned on perpendicularly magnetized films support Mie‐type resonances that modulate reflection and transmission dissymmetry by >±2% in experiments. Spatial and spectral interference between dipolar modes, proximity effects, and gain are evaluated by varying disk aspect ratio, metasurface–metal separation, and magnetic film thickness, respectively. Simulated enhancements in magnetic circular birefringence and differential absorption are correlated with amplified local field rotation at electric dipolar modes. Greater achievable amplifications are shown via simulations with single‐crystalline Si metasurfaces exhibiting lower losses, including a 12‐fold strengthened electric field rotation within ferromagnetic layers. The metasurface design rules established here could enable nanoscale localization of all‐optical magnetic switching with lowered laser fluence thresholds, as well as enhanced magneto‐optical responses for light‐assisted reading in spintronic devices. 
    more » « less
  2. Reconfigurable metasurfaces have been pursued intensively in recent years for the ability to modulate the light after fabrication. However, the optical performances of these devices are limited by the efficiency, actuation response speed and mechanical control for reconfigurability. In this paper, we propose a fast tunable optical absorber based on the critical coupling of resonance mode to absorptive medium and the plasma dispersion effect of free carriers in semiconductor. The tunable absorber structure includes a single-layer or bi-layer silicon photonic crystal slab (PCS) to induce a high-Q optical resonance, a monolayer graphene as the absorption material, and bottom reflector to remove transmission. By modulating the refractive index of PCS via the plasma dispersion of the free carrier, the critical coupling condition is shifted in spectrum, and the device acquires tuning capability between perfect absorption and total reflection of the incident monochromatic light beam. Simulation results show that, with silicon index change of 0.015, the tunable absorption of light can achieve the reflection/absorption switching, and full range of reflection phase control is feasible in the over coupling region. The proposed reconfigurable structure has potential applications in remote sensing, free-space communications, LiDAR, and imaging. 
    more » « less
  3. Abstract We demonstrate shear‐printed layered photonic films with vivid structural coloration from bio‐derived cellulose nanocrystals and highly aligned Ti3C2TxMXene nanoflakes. These ultrathin films (700–1500 nm) show high light transmittance above 40% in the visible range. In reflectance mode, however, the films appear vividly colored and iridescent due to the multiple distinct photonic bandgaps in the visible and near‐infrared ranges, which are rarely observed in CNC composites. The structural coloration is controlled by the stacking of MXene nanoscale‐thin layers separated by the thicker cellulose nanocrystals matrix, as confirmed by photonic simulations. The unique combination of distinctly different optical appearances in transmittance and reflectance modes occurs in films printed with just a few layers. This is because of the molecularly smooth interfaces and the high refractive contrast between bio‐based and inorganic phases, which result in a concurrence of constructive and destructive interference. These lamellar biophotonic films open the possibilities for advanced radiative cooling, camouflaging, multifunctional capacitors, and optical filtration applications, while the cellulose nanocrystals matrix strengthens their flexibility, robustness, and facilitates sustainability. 
    more » « less
  4. Abstract Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d33*) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100}<100> dislocations is proposed. This dislocation engineering yields an intrinsic lock‐in steady–state electrostrain of 0.69% at a low field of 10 kV cm−1without external stress and an output strain energy density of 5.24 J cm−3in single‐crystal BaTiO3, outperforming the benchmark piezoceramics and relaxor ferroelectric single‐crystals. Additionally, applying a compression stress of 6 MPa fully unlocks electrostrains exceeding 1%, yielding a remarkabled33* value over 10 000 pm V−1and achieving a record‐high strain energy density of 11.67 J cm−3. Optical and transmission electron microscopy, paired with laboratory and synchrotron X‐ray diffraction, is employed to rationalize the observed electrostrain. Phase‐field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findings present an effective and sustainable strategy for developing high‐performance, lead‐free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies. 
    more » « less
  5. Abstract The development of a low‐cost photopolymer resin to fabricate optical glass of high refractive index for plastic optics is reported. This new free radically polymerizable photopolymer resin, termed, disulfide methacrylate resin (DSMR) is synthesized by the direct addition of allyl methacrylate to a commodity sulfur petrochemical, sulfur monochloride (S2Cl2). The rapid rates of free radical photopolymerization confer significant advantages in preparing high‐quality, bulk optical glass. The low‐cost, optical glass produced from this photopolymer possesses a desirable combination of high refractive index (n ≈ 1.57–1.59), low birefringence (Δn < 10−4), high glass transition values (Tg ≈ 100 °C), along with optical transparency rivaling, or exceeding that of poly(methyl methacrylate) (PMMA) as indicated by very low optical absorption coefficients (α < 0.05 cm−1at 1310 nm) measured for thick glass DSMR photopolymer samples (diameter (D) = 25 mm; thickness = 1–30 mm). The versatile manufacturability of DSMR photopolymers for both molding and diamond turn machining methods is demonstrated to prepare precision optics and nano‐micropatterned arrays. Finally, large‐scale 3D printing vat photopolymerization of DSMR using high‐area rapid printing digital light processing additive manufacturing is demonstrated. 
    more » « less