skip to main content


Title: Materials with Electroprogrammable Stiffness
Abstract

Stiffness is a mechanical property of vital importance to any material system and is typically considered a static quantity. Recent work, however, has shown that novel materials with programmable stiffness can enhance the performance and simplify the design of engineered systems, such as morphing wings, robotic grippers, and wearable exoskeletons. For many of these applications, the ability to program stiffness with electrical activation is advantageous because of the natural compatibility with electrical sensing, control, and power networks ubiquitous in autonomous machines and robots. The numerous applications for materials with electrically driven stiffness modulation has driven a rapid increase in the number of publications in this field. Here, a comprehensive review of the available materials that realize electroprogrammable stiffness is provided, showing that all current approaches can be categorized as using electrostatics or electrically activated phase changes, and summarizing the advantages, limitations, and applications of these materials. Finally, a perspective identifies state‐of‐the‐art trends and an outlook of future opportunities for the development and use of materials with electroprogrammable stiffness.

 
more » « less
Award ID(s):
1830475
PAR ID:
10449622
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
35
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Variable stiffness in elastomers can be achieved through the introduction of low melting point alloy particles, such as Field's metal (FM), enabling on‐demand switchable elasticity and anisotropy in response to thermal stimulus. Because the FM particles are thermally transitioned between solid and liquid phases, it is beneficial for the composite to be electrically conductive so the stiffness may be controlled via direct Joule heating. While FM is highly conductive, spherical particles contribute to a high percolation threshold. In this paper, it is shown that the percolation threshold of FM particulate composites can be reduced with increasing particles aspect ratio. Increasing the aspect ratio of phase‐changing fillers also increases the rigid‐to‐soft modulus ratio of the composite by raising the elastic modulus in the rigid state while preserving the low modulus in the soft state. The results indicate that lower quantities of high aspect ratio FM particles can be used to achieve both electrical conductivity and stiffness‐switching via a single solution and without introducing additional conductive fillers. This technique is applied to enable a highly stretchable, variable stiffness, and electrically conductive composite, which, when patterned around an inflatable actuator, allows for adaptable trajectories via selective softening of the surface materials.

     
    more » « less
  2.  
    more » « less
  3. Abstract

    Soft robots composed of elastic materials can exhibit nonlinear behaviors, such as variable stiffness and adaptable deformation, that are favorable to cooperation with humans. These characteristics enable soft robots to be used in multiple applications, ranging from minimally invasive surgery and search and rescue in emergency or hazardous environments to marine or space exploration and assistive devices for people with musculoskeletal disorders. Although soft actuators composed of smart materials have been proposed as a control strategy for soft robots, most studies have focused on traditional actuators using hydraulic or pneumatic pressure. Over the years, these have made a lot of progress, but they have not been able to overcome the limitations of the complex configuration of the system and the expansion of the cross-section of the actuator when contracted. This paper merges the actuator design methodology for smart materials with the mechanical analysis of auxetic structures to present an electrically driven soft actuator architecture that achieves reliable actuation displacements. This novel soft actuator, constructed with contractile SMA springs and flexible auxetic metamaterials (FAM), has a spontaneous recovery of the shape after a contraction, a negative Poisson’s ratio, and over 90% of consistency with the performance predictions at the design stage. Our research presents a methodology for the design of a new electrically driven soft actuator, describes the manufacture of SMA springs and FAM, and concludes with the validation of the design by experimental analysis using the 2D planar soft actuator prototype. Finally, our study revealed that the application of the extraordinary characteristics of smart materials and structures together into a single architecture can be a strategy to overcome the limitations of existing soft actuator studies.

     
    more » « less
  4. Electrically responsive biomaterials are an important and emerging technology in the fields of biomedical and material sciences. A great deal of research explores the integral role of electrical conduction in normal and diseased cell biology, and material scientists are focusing an even greater amount of attention on natural and hybrid materials as sources of biomaterials which can mimic the properties of cells. This review establishes a summary of those efforts for the latter group, detailing the current materials, theories, methods, and applications of electrically conductive biomaterials fabricated from protein polymers and polysaccharides. These materials can be used to improve human life through novel drug delivery, tissue regeneration, and biosensing technologies. The immediate goal of this review is to establish fabrication methods for protein and polysaccharide-based materials that are biocompatible and feature modular electrical properties. Ideally, these materials will be inexpensive to make with salable production strategies, in addition to being both renewable and biocompatible. 
    more » « less
  5. Abstract

    Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. Taking advantage of these strengths, this paper reports on NV‐based local sensing of the electrically driven insulator‐to‐metal transition (IMT) in a proximal Mott insulator. The resistive switching properties of both pristine and ion‐irradiated VO2thin film devices are studied by performing optically detected NV electron spin resonance measurements. These measurements probe thelocaltemperature and magnetic field in electrically biased VO2devices, which are in agreement with theglobaltransport measurement results. In pristine devices, the electrically driven IMT proceeds through Joule heating up to the transition temperature while in ion‐irradiated devices, the transition occurs nonthermally, well below the transition temperature. The results provide direct evidence for nonthermal electrically induced IMT in a Mott insulator, highlighting the significant opportunities offered by NV quantum sensors in exploring nanoscale thermal and electrical behaviors in Mott materials.

     
    more » « less