Abstract. Solar climate intervention using stratospheric aerosol injection (SAI) has been proposed as a method which could offset some of the adverse effects of global warming. The Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI) set of simulations is based on a moderate-greenhouse-gas-emission scenario and employs injection of sulfur dioxide at four off-equatorial locations using a control algorithm which maintains the global-mean surface temperature at 1.5 K above pre-industrial conditions (ARISE-SAI-1.5), as well as the latitudinal gradient and inter-hemispheric difference in surface temperature. This is the first comparison between two models (CESM2 and UKESM1) applying the same multi-target SAI strategy. CESM2 is successful in reaching its temperature targets, but UKESM1 has considerable residual Arctic warming. This occurs because the pattern of temperature change in a climate with SAI is determined by both the structure of the climate forcing (mainly greenhouse gases and stratospheric aerosols) and the climate models' feedbacks, the latter of which favour a strong Arctic amplification of warming in UKESM1. Therefore, research constraining the level of future Arctic warming would also inform any hypothetical SAI deployment strategy which aims to maintain the inter-hemispheric and Equator-to-pole near-surface temperature differences. Furthermore, despite broad agreement in the precipitation response in the extratropics, precipitation changes over tropical land show important inter-model differences, even under greenhouse gas forcing only. In general, this ensemble comparison is the first step in comparing policy-relevant scenarios of SAI and will help in the design of an experimental protocol which both reduces some known negative side effects of SAI and is simple enough to encourage more climate models to participate.
more »
« less
The Choice of Baseline Period Influences the Assessments of the Outcomes of Stratospheric Aerosol Injection
Abstract The specifics of the simulated injection choices in the case of stratospheric aerosol injections (SAI) are part of the crucial context necessary for meaningfully discussing the impacts that a deployment of SAI would have on the planet. One of the main choices is the desired amount of cooling that the injections are aiming to achieve. Previous SAI simulations have usually either simulated a fixed amount of injection, resulting in a fixed amount of warming being offset, or have specified one target temperature, so that the amount of cooling is only dependent on the underlying trajectory of greenhouse gases. Here, we use three sets of SAI simulations achieving different amounts of global mean surface cooling while following a middle‐of‐the‐road greenhouse gas emission trajectory: one SAI scenario maintains temperatures at 1.5°C above preindustrial levels (PI), and two other scenarios which achieve additional cooling to 1.0°C and 0.5°C above PI. We demonstrate that various surface impacts scale proportionally with respect to the amount of cooling, such as global mean precipitation changes, changes to the Atlantic Meridional Overturning Circulation and to the Walker Cell. We also highlight the importance of the choice of the baseline period when comparing the SAI responses to one another and to the greenhouse gas emission pathway. This analysis leads to policy‐relevant discussions around the concept of a reference period altogether, and to what constitutes a relevant, or significant, change produced by SAI.
more »
« less
- PAR ID:
- 10450030
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Stratospheric aerosol injection (SAI), as a possible supplement to emission reduction, has the potential to reduce some of the risks associated with climate change. Adding aerosols to the lower stratosphere would result in temporary global cooling. However, different choices for the aerosol injection latitude(s) and season(s) have been shown to lead to significant differences in regional surface climate, introducing a design aspect to SAI. Past research has shown that there are at least three independent degrees of freedom (DOFs) that can be used to simultaneously manage three different climate goals. Knowing how many more DOFs there are, and thus how many independent climate goals can be simultaneously managed, is essential to understanding fundamental limits of how well SAI might compensate for anthropogenic climate change, and evaluating any underlying trade-offs between different climate goals. Here, we quantify the number of meaningfully independent DOFs of the SAI design space. This number of meaningfully independent DOFs depends on both the amount of cooling and the climate variables used for quantifying the changes in surface climate. At low levels of global cooling, only a small set of injection choices yield detectably different surface climate responses. For a cooling level of 1–1.5 ∘C, we find that there are likely between six and eight meaningfully independent DOFs. This narrows down the range of available DOFs and also reveals new opportunities for exploring alternate SAI designs with different distributions of climate impacts.more » « less
-
Abstract Earth system models are powerful tools to simulate the climate response to hypothetical climate intervention strategies, such as stratospheric aerosol injection (SAI). Recent simulations of SAI implement a tool from control theory, called a controller, to determine the quantity of aerosol to inject into the stratosphere to reach or maintain specified global temperature targets, such as limiting global warming to 1.5°C above pre‐industrial temperatures. This work explores how internal (unforced) climate variability can impact controller‐determined injection amounts using the Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE‐SAI) simulations. Since the ARISE‐SAI controller determines injection amounts by comparing global annual‐mean surface temperature to predetermined temperature targets, internal variability that impacts temperature can impact the total injection amount as well. Using an offline version of the ARISE‐SAI controller and data from Earth system model simulations, we quantify how internal climate variability and volcanic eruptions impact injection amounts. While idealized, this approach allows for the investigation of a large variety of climate states without additional simulations and can be used to attribute controller sensitivities to specific modes of internal variability.more » « less
-
Abstract Owing to increasing greenhouse gas emissions, the Antarctic Ice Sheet is vulnerable to rapid ice loss in the upcoming decades and centuries. This study examines the effectiveness of using stratospheric aerosol injection (SAI) that minimizes global mean temperature (GMT) change to slow projected 21st century Antarctic ice loss. We simulate 11 different SAI cases which vary by the latitudinal location(s) and the amount(s) of the injection(s) to examine the climatic response near Antarctica in each case as compared to the reference climate at the turn of the last century. We demonstrate that injecting at a single latitude in the northern hemisphere or at the Equator increases Antarctic shelf ocean temperatures pertinent to ice shelf basal melt, while injecting only in the southern hemisphere minimizes this temperature change. We use these results to analyze the results of more complex multi‐latitude injection strategies that maintain GMT at or below 1.5°C above the pre‐industrial. All these multi‐latitude cases will slow Antarctic ice loss relative to the mid‐to‐late 21st century SSP2‐4.5 emissions pathway. Yet, to avoid a GMT threshold estimated by previous studies pertaining to rapid West Antarctic ice loss (1.5°C above the pre‐industrial GMT, though large uncertainty), our study suggests SAI would need to cool about 1.0°C below this threshold and predominately inject at low southern hemisphere latitudes (∼15°S ‐ 30°S). These results highlight the complexity of factors impacting the Antarctic response to SAI and the critical role of the injection strategy in preventing future ice loss.more » « less
-
Abstract The impacts of Stratospheric Aerosol Injection (SAI) on the atmosphere and surface climate depend on when and where the sulfate aerosol precursors are injected, as well as on how much surface cooling is to be achieved. We use a set of CESM2(WACCM6) SAI simulations achieving three different levels of global mean surface cooling and demonstrate that unlike some direct surface climate impacts driven by the reflection of solar radiation by sulfate aerosols, the SAI‐induced changes in the high latitude circulation and ozone are more complex and could be non‐linear. This manifests in our simulations by disproportionally larger Antarctic springtime ozone loss, significantly larger intra‐ensemble spread of the Arctic stratospheric jet and ozone responses, and non‐linear impacts on the extratropical modes of surface climate variability under the strongest‐cooling SAI scenario compared to the weakest one. These potential non‐linearities may add to uncertainties in projections of regional surface impacts under SAI.more » « less
An official website of the United States government
