skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A temperature-dependent length-scale for transferable local density potentials
Recent coarse-grained (CG) models have often supplemented conventional pair potentials with potentials that depend upon the local density around each particle. In this work, we investigate the temperature-dependence of these local density (LD) potentials. Specifically, we employ the multiscale coarse-graining (MS-CG) force-matching variational principle to parameterize pair and LD potentials for one-site CG models of molecular liquids at ambient pressure. The accuracy of these MS-CG LD potentials quite sensitively depends upon the length-scale, rc, that is employed to define the local density. When the local density is defined by the optimal length-scale, rc*, the MS-CG potential often accurately describes the reference state point and can provide reasonable transferability across a rather wide range of temperatures. At ambient pressure, the optimal LD length-scale varies linearly with temperature over a very wide range of temperatures. Moreover, if one adopts this temperature-dependent LD length-scale, then the MS-CG LD potential appears independent of temperature, while the MS-CG pair potential varies linearly across this temperature range. This provides a simple means for predicting pair and LD potentials that accurately model new state points without performing additional atomistic simulations. Surprisingly, at certain state points, the predicted potentials provide greater accuracy than MS-CG potentials that were optimized for the state point.  more » « less
Award ID(s):
2154433 1856337
PAR ID:
10450330
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
7
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract By eliminating unnecessary details, coarse-grained (CG) models provide the necessary efficiency for simulating scales that are inaccessible to higher resolution models. However, because they average over atomic details, the effective potentials governing CG degrees of freedom necessarily incorporate significant entropic contributions, which limit their transferability and complicate the treatment of thermodynamic properties. This work employs a dual-potential approach to consider the energetic and entropic contributions to effective interaction potentials for CG models. Specifically, we consider one- and three-site CG models for ortho-terphenyl (OTP) both above and below its glass transition. We employ the multiscale coarse-graining (MS-CG) variational principle to determine interaction potentials that accurately reproduce the structural properties of an all-atom (AA) model for OTP at each state point. We employ an energy-matching variational principle to determine an energy operator that accurately reproduces the intra- and inter-molecular energy of the AA model. While the MS-CG pair potentials are almost purely repulsive, the corresponding pair energy functions feature a pronounced minima that corresponds to contacting benzene rings. These energetic functions then determine an estimate for the entropic component of the MS-CG interaction potentials. These entropic functions accurately predict the MS-CG pair potentials across a wide range of liquid state points at constant density. Moreover, the entropic functions also predict pair potentials that quite accurately model the AA pair structure below the glass transition. Thus, the dual-potential approach appears a promising approach for modeling AA energetics, as well as for predicting the temperature-dependence of CG effective potentials. 
    more » « less
  2. We investigate the temperature- and density-dependence of effective pair potentials for 1-site coarse-grained (CG) models of two industrial solvents, 1,4-dioxane and tetrahydrofuran. We observe that the calculated pair potentials are much more sensitive to density than to temperature. The generalized-Yvon-Born−Green framework reveals that this striking density-dependence reflects corresponding variations in the many-body correlations that determine the environment-mediated indirect contribution to the pair mean force. Moreover, we demonstrate, perhaps surprisingly, that this density-dependence is not important for accurately modeling the intermolecular structure. Accordingly, we adopt a density-independent interaction potential and transfer the density-dependence of the calculated pair potentials into a configuration- independent volume potential. Furthermore, we develop a single global potential that accurately models the intermolecular structure and pressure−volume equation of state across a very wide range of liquid state points. Consequently, this work provides fundamental insight into the density-dependence of effective pair potentials and also provides a significant step toward developing predictive CG models for efficiently modeling industrial solvents. 
    more » « less
  3. A hallmark of meso-scale interfacial fluids is the multi-faceted, scale-dependent interfacial energy, which often manifests different characteristics across the molecular and continuum scale. The multi-scale nature imposes a challenge to construct reliable coarse-grained (CG) models, where the CG potential function needs to faithfully encode the many-body interactions arising from the unresolved atomistic interactions and account for the heterogeneous density distributions across the interface. We construct the CG models of both single- and two-component polymeric fluid systems based on the recently developed deep coarse-grained potential [Zhang et al., J. Chem. Phys. 149, 034101 (2018)] scheme, where each polymer molecule is modeled as a CG particle. By only using the training samples of the instantaneous force under the thermal equilibrium state, the constructed CG models can accurately reproduce both the probability density function of the void formation in bulk and the spectrum of the capillary wave across the fluid interface. More importantly, the CG models accurately predict the volume-to-area scaling transition for the apolar solvation energy, illustrating the effectiveness to probe the meso-scale collective behaviors encoded with molecular-level fidelity. 
    more » « less
  4. Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system’s characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility. 
    more » « less
  5. The integral equation coarse-graining (IECG) approach is a promising high-level coarse-graining (CG) method for polymer melts, with variable resolution from soft spheres to multi CG sites, which preserves the structural and thermodynamical consistencies with the related atomistic simulations. When compared to the atomistic description, the procedure of coarse-graining results in smoother free energy surfaces, longer-ranged potentials, a decrease in the number of interaction sites for a given polymer, and more. Because these changes have competing effects on the computational efficiency of the CG model, care needs to be taken when studying the effect of coarse-graining on the computational speed-up in CG molecular dynamics simulations. For instance, treatment of long-range CG interactions requires the selection of cutoff distances that include the attractive part of the effective CG potential and force. In particular, we show how the complex nature of the range and curvature of the effective CG potential, the selection of a suitable CG timestep, the choice of the cutoff distance, the molecular dynamics algorithms, and the smoothness of the CG free energy surface affect the efficiency of IECG simulations. By direct comparison with the atomistic simulations of relatively short chain polymer melts, we find that the overall computational efficiency is highest for the highest level of CG (soft spheres), with an overall improvement of the computational efficiency being about 10 6 –10 8 for various CG levels/resolutions. Therefore, the IECG method can have important applications in molecular dynamics simulations of polymeric systems. Finally, making use of the standard spatial decomposition algorithm, the parallel scalability of the IECG simulations for various levels of CG is presented. Optimal parallel scaling is observed for a reasonably large number of processors. Although this study is performed using the IECG approach, its results on the relation between the level of CG and the computational efficiency are general and apply to any properly-constructed CG model. 
    more » « less