skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tensor Decomposition of Large-scale Clinical EEGs Reveals Interpretable Patterns of Brain Physiology
Identifying abnormal patterns in electroencephalography (EEG) remains the cornerstone of diagnosing several neurological diseases. The current clinical EEG review process relies heavily on expert visual review, which is unscalable and error-prone. In an effort to augment the expert review process, there is a significant interest in mining population-level EEG patterns using unsupervised approaches. Current approaches rely either on two-dimensional decompositions (e.g., principal and independent component analyses) or deep representation learning (e.g., auto-encoders, self-supervision). However, most approaches do not leverage the natural multi-dimensional structure of EEGs and lack interpretability. In this study, we propose a tensor decomposition approach using the canonical polyadic decomposition to discover a parsimonious set of population-level EEG patterns, retaining the natural multi-dimensional structure of EEG recordings (time×space×frequency) . We then validate their clinical value using a cohort of patients with varying stages of cognitive impairment. Our results show that the discovered patterns reflect physiologically meaningful features and accurately classify the stages of cognitive impairment (healthy vs mild cognitive impairment vs Alzheimer's dementia) with substantially fewer features compared to classical and deep learning-based baselines. We conclude that the decomposition of population-level EEG tensors recovers expert-interpretable EEG patterns that can aid in studying smaller specialized clinical cohorts.  more » « less
Award ID(s):
2105233 2344731
PAR ID:
10450528
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer’s disease and Lewy Body disease are detectable by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness. As part of their neurologic evaluation at Mayo Clinic, 11 001 patients underwent 12 176 routine, standard 10–20 scalp EEG studies. From these raw EEGs, we developed an algorithm based on posterior alpha activity and eye movement to automatically select awake-eyes-closed epochs and estimated average spectral power density (SPD) between 1 and 45 Hz for each channel. We then created a three-dimensional (3D) tensor (record × channel × frequency) and applied a canonical polyadic decomposition to extract the top six factors. We further identified an independent cohort of patients meeting consensus criteria for mild cognitive impairment (30) or dementia (39) due to Alzheimer’s disease and dementia with Lewy Bodies (31) and similarly aged cognitively normal controls (36). We evaluated the ability of the six factors in differentiating these subgroups using a Naïve Bayes classification approach and assessed for linear associations between factor loadings and Kokmen short test of mental status scores, fluorodeoxyglucose (FDG) PET uptake ratios and CSF Alzheimer’s Disease biomarker measures. Factors represented biologically meaningful brain activities including posterior alpha rhythm, anterior delta/theta rhythms and centroparietal beta, which correlated with patient age and EEG dysrhythmia grade. These factors were also able to distinguish patients from controls with a moderate to high degree of accuracy (Area Under the Curve (AUC) 0.59–0.91) and Alzheimer’s disease dementia from dementia with Lewy Bodies (AUC 0.61). Furthermore, relevant EEG features correlated with cognitive test performance, PET metabolism and CSF AB42 measures in the Alzheimer’s subgroup. This study demonstrates that data-driven approaches can extract biologically meaningful features from population-level clinical EEGs without artefact rejection or a-priori selection of channels or frequency bands. With continued development, such data-driven methods may improve the clinical utility of EEG in memory care by assisting in early identification of mild cognitive impairment and differentiating between different neurodegenerative causes of cognitive impairment. 
    more » « less
  2. We present a novel deep learning framework to automatically compute independently salient networks in the brain that characterize the underlying changes in the brain in association with clinically observed assessments. Unsupervised approaches for high-dimensional neuroimaging data focus on computing low-dimensional brain components for subsequent analysis, while supervised learning approaches aim for predictive performance and yielding a single list of associative feature importance, thus making it hard to interpret at the level of brain subsystems. Our approach integrates the goals of decomposition into lower dimensional subspaces and, identifying salient brain subsystems into a single automated framework. We first train a convolutional neural network on structural brain features to predict clinical assessments, followed by a multi-step decomposition in the saliency space to compute salient brain networks that intrinsically characterize the brain changes associated with the assessment. Through a repeated training procedure on an Alzheimer’s disease (AD) dataset, we show that our method effectively computes AD-related salient brain subsystems directly from high-dimensional neuroimaging data, while maintaining predictive performance. Such approaches are crucial for data-driven biomarker development for brain disorders. 
    more » « less
  3. Human scene categorization is rapid and robust, but we have little understanding of how individual features contribute to categorization, nor the time scale of their contribution. This issue is compounded by the non- independence of the many candidate features. Here, we used singular value decomposition to orthogonalize 11 different scene descriptors that included both visual and semantic features. Using high-density EEG and regression analyses, we observed that most explained variability was carried by a late layer of a deep convolutional neural network, as well as a model of a scene’s functions given by the American Time Use Survey. Furthermore, features that explained more variance also tended to explain earlier variance. These results extend previous large-scale behavioral results showing the importance of functional features for scene categorization. Furthermore, these results fail to support models of visual perception that are encapsulated from higher-level cognitive attributes. 
    more » « less
  4. Abstract BACKGROUNDEarly discrimination and prediction of cognitive decline are crucial for the study of neurodegenerative mechanisms and interventions to promote cognitive resiliency. METHODSOur research is based on resting‐state electroencephalography (EEG) and the current dataset includes 137 consensus‐diagnosed, community‐dwelling Black Americans (ages 60–90 years, 84 healthy controls [HC]; 53 mild cognitive impairment [MCI]) recruited through Wayne State University and Michigan Alzheimer's Disease Research Center. We conducted multiscale analysis on time‐varying brain functional connectivity and developed an innovative soft discrimination model in which each decision on HC or MCI also comes with a connectivity‐based score. RESULTSThe leave‐one‐out cross‐validation accuracy is 91.97% and 3‐fold accuracy is 91.17%. The 9 to 18 months’ progression trend prediction accuracy over an availability‐limited subset sample is 84.61%. CONCLUSIONThe EEG‐based soft discrimination model demonstrates high sensitivity and reliability for MCI detection and shows promising capability in proactive prediction of people at risk of MCI before clinical symptoms may occur. 
    more » « less
  5. Background Team leadership during medical emergencies like cardiac arrest resuscitation is cognitively demanding, especially for trainees. These cognitive processes remain poorly characterized due to measurement challenges. Using virtual reality simulation, this study aimed to elucidate and compare communication and cognitive processes-such as decision-making, cognitive load, perceived pitfalls, and strategies-between expert and novice code team leaders to inform strategies for accelerating proficiency development. Methods A simulation-based mixed methods approach was utilized within a single large academic medical center, involving twelve standardized virtual reality cardiac arrest simulations. These 10- to 15-minutes simulation sessions were performed by seven experts and five novices. Following the simulations, a cognitive task analysis was conducted using a cued-recall protocol to identify the challenges, decision-making processes, and cognitive load experienced across the seven stages of each simulation. Results The analysis revealed 250 unique cognitive processes. In terms of reasoning patterns, experts used inductive reasoning, while novices tended to use deductive reasoning, considering treatments before assessments. Experts also demonstrated earlier consideration of potential reversible causes of cardiac arrest. Regarding team communication, experts reported more critical communications, with no shared subthemes between groups. Experts identified more teamwork pitfalls, and suggested more strategies compared to novices. For cognitive load, experts reported lower median cognitive load (53) compared to novices (80) across all stages, with the exception of the initial presentation phase. Conclusions The identified patterns of expert performance — superior teamwork skills, inductive clinical reasoning, and distributed cognitive strategiesn — can inform training programs aimed at accelerating expertise development. 
    more » « less