skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Laboratory Experiments Contrasting Growth of Uniformly and Nonuniformly Spaced Hydraulic Fractures
Abstract Hydraulic fractures that grow in close proximity to one an other interact and compete for fluid that is injected to the wellbore, leading to dominance of some fractures and suppression of others. This phenomenon is ubiquitously encountered in stimulation of horizontal wells in the petroleum industry and it also bears possible relevance to emplacement of multiple laterally propagating swarms of magma‐driven dykes. Motivated by a need to validate mechanical models, this paper focuses on laboratory experiments and their comparison to simulation results for the behavior of multiple, simultaneously growing hydraulic fractures. The experiments entail the propagation of both uniformly and nonuniformly spaced hydraulic fractures by injection of glucose or glycerin‐based solutions into transparent (polymethyl methacrylate) blocks. Observed fracture growth is then compared to predictions of a fully coupled, parallel‐planar 3D hydraulic fracturing simulator. Results from experiments and simulations confirm the suppression of inner fractures when the spacing between the fractures is uniform. For certain non‐uniform spacing, both experiments and simulations show mitigated suppression of the central fractures. Specifically, the middle fracture in a 5‐fracture array grows nearly equally to the outer fractures from the beginning of injection. Furthermore, with some delay, the other two fractures that are suppressed with uniformly spaced configurations grow, and eventually achieve a velocity exceeding the other three fractures in the array. Hence, these experiments give the first laboratory evidence of a model‐predicted behavior wherein certain nonuniform fracture spacings result in drastic increases in the growth of all fractures within the array.  more » « less
Award ID(s):
1645246
PAR ID:
10450821
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
1
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT:Creation of a fracture network in a hydraulic fracturing process is essential for subsurface energy extraction and CO2 sequestration. It is facilitated by reactivation of pre-existing intersecting weak layers and cemented cracks in the rock. In this study, a poromechanical model is developed for the hydraulic fracturing process in rocks containing such pre-existing weak layers. Based on the mixture theory, the crack band model is used to simulate the growth of a crack system. The governing equations with the parameters for hydromechanical coupling are derived, to describe the evolution of the opening and branching of cracks caused by water injection. Microplane model M7 is adopted to characterize the deformation and fracturing of the solid skeleton of the rock, and the Poiseuille law is used to characterize fluid flow through the hydraulic fractures. Numerical simulations are performed to reproduce and interpret recently published laboratory-scale hydraulic fracturing experiments conducted at Los Alamos National Laboratory (LANL). In these experiments, the rock was represented by confined plaster slabs containing orthogonal intersecting weak layers of higher porosity. Numerical simulations reveal how poromechanical characteristics such as the Biot coefficient and the fluid injection rate lead to various typical fracture modes observed in the experiments. These modes include formation of one dominant planar crack or various orthogonal fracture networks. 
    more » « less
  2. null (Ed.)
    Abstract. The continuum of behavior that emerges during fracturenetwork development in crystalline rock may be categorized into threeend-member modes: fracture nucleation, isolated fracture propagation, andfracture coalescence. These different modes of fracture growth producefracture networks with distinctive geometric attributes, such as clusteringand connectivity, that exert important controls on permeability and theextent of fluid–rock interactions. To track how these modes of fracturedevelopment vary in dominance throughout loading toward failure and thushow the geometric attributes of fracture networks may vary under theseconditions, we perform in situ X-ray tomography triaxial compressionexperiments on low-porosity crystalline rock (monzonite) under upper-crustalstress conditions. To examine the influence of pore fluid on the varyingdominance of the three modes of growth, we perform two experiments undernominally dry conditions and one under water-saturated conditions with 5 MPa ofpore fluid pressure. We impose a confining pressure of 20–35 MPa and thenincrease the differential stress in steps until the rock failsmacroscopically. After each stress step of 1–5 MPa we acquire athree-dimensional (3D) X-ray adsorption coefficient field from which weextract the 3D fracture network. We develop a novel method of trackingindividual fractures between subsequent tomographic scans that identifieswhether fractures grow from the coalescence and linkage of several fracturesor from the propagation of a single fracture. Throughout loading in all ofthe experiments, the volume of preexisting fractures is larger than that ofnucleating fractures, indicating that the growth of preexisting fracturesdominates the nucleation of new fractures. Throughout loading until close tomacroscopic failure in all of the experiments, the volume of coalescingfractures is smaller than the volume of propagating fractures, indicatingthat fracture propagation dominates coalescence. Immediately precedingfailure, however, the volume of coalescing fractures is at least double thevolume of propagating fractures in the experiments performed at nominallydry conditions. In the water-saturated sample, in contrast, although thevolume of coalescing fractures increases during the stage preceding failure,the volume of propagating fractures remains dominant. The influence ofstress corrosion cracking associated with hydration reactions at fracturetips and/or dilatant hardening may explain the observed difference infracture development under dry and water-saturated conditions. 
    more » « less
  3. Abstract Distributed acoustic sensing (DAS) was originally intended to measure oscillatory strain at frequencies of 1 Hz or more on a fiber optic cable. Recently, measurements at much lower frequencies have opened the possibility of using DAS as a dynamic strain sensor in boreholes. A fiber optic cable mechanically coupled to a geologic formation will strain in response to hydraulic stresses in pores and fractures. A DAS interrogator can measure dynamic strain in the borehole, which can be related to fluid pressure through the mechanical compliance properties of the formation. Because DAS makes distributed measurements, it is capable of both locating hydraulically active features and quantifying the fluid pressure in the formation. We present field experiments in which a fiber optic cable was mechanically coupled to two crystalline rock boreholes. The formation was stressed hydraulically at another well using alternating injection and pumping. The DAS instrument measured oscillating strain at the location of a fracture zone known to be hydraulically active. Rock displacements of less than 1 nm were measured. Laboratory experiments confirm that displacement is measured correctly. These results suggest that fiber optic cable embedded in geologic formations may be used to map hydraulic connections in three‐dimensional fracture networks. A great advantage of this approach is that strain, an indirect measure of hydraulic stress, can be measured without beforehand knowledge of flowing fractures that intersect boreholes. The technology has obvious applications in water resources, geothermal energy, CO2sequestration, and remediation of groundwater in fractured bedrock. 
    more » « less
  4. Abstract Muddy marine sediments are elastic materials in which bubbles grow and worms extend their burrows by fracture. Bubble growth and burrowing behavior are dependent on the stiffness and fracture toughness (KIc) of these muds. This article describes a custom laboratory apparatus to measure the fracture toughness of muddy, cohesive sediments using a bubble injection method. The system induces fracture in sediment samples by incrementally injecting air through a needle inserted into the sediment. The increasing pneumatic pressure is monitored until it drops abruptly, indicating bubble formation. Fracture toughness is then calculated from the peak pressure at which fracture occurred, following cavitation rheology methods developed for soft gels. The system has produced measurements that compare well to previous data but with better spatial resolution, allowing for characterization of spatial heterogeneity on small scales. 
    more » « less
  5. Summary We present an algorithm to simulate curvilinear hydraulic fractures in plane strain and axisymmetry. We restrict our attention to sharp fractures propagating in an isotropic, linear elastic medium and driven by the injection of a laminar, Newtonian fluid governed by lubrication theory, and we require the existence of a finite lag region between the fluid front and the crack tip. The key novelty of our approach is in how we discretize the evolving crack and fluid domains: we utilize universal meshes (UMs), a technique to create conforming triangulations of a problem domain by only perturbing nodes of a universal background mesh in the vicinity of the boundary. In this way, we construct meshes, which conform to the crack and to the fluid front. This allows us to build standard piecewise linear finite element spaces and to monolithically solve the quasistatic hydraulic fracture problem for the displacement field in the rock and the pressure in the fluid. We demonstrate the performance of our algorithms through three examples: a convergence study in plane strain, a comparison with experiments in axisymmetry, and a novel case of a fracture in a narrow pay zone. 
    more » « less