The Holocene hydroclimate evolution and underlying mechanisms modulating the East Asian summer monsoon (EASM) remains controversial, especially in south eastern China. Here we present a multiproxy peat record of monsoon evolution from southeastern China covering the last 14 ka. Our new records show a relatively weaker EASM but wetter hydroclimate during the early (10 to 8 ka) and late Holocene (after 5.4 ka), while a stronger EASM and overall drier climate during the mid-Holocene (8 to 5.4 ka). In line with nearby speleothem records, our results reveal a dominant control of the northern-latitude ice-sheet meltwater forcing on millennial-scale East Asian hydroclimate variability during the last deglaciation and early Holocene. This dominant influence, however, likely waned once the global sea level had stabilized during the mid-to-late Holocene, giving way to other drivers of the monsoon and hydroclimate, including a combination of summer insolation and teleconnection patterns associated with vegetation-dust feedbacks.
more »
« less
Climate variability in the northern Levant from the highly resolved Qadisha record (Lebanon) during the Holocene optimum
Abstract New stalagmites from Qadisha Cave (Lebanon) located at 1720 m above sea level provide a high-resolution and well-dated record for northern Mount Lebanon. The stalagmites grew discontinuously from 9.2 to 5.7 and at 3.5 ka, and they show a tendency to move from a more negative oxygen isotope signal at ~9.1 ka to a more positive signal at ~5.8 ka. Such a trend reflects a change from a wetter to a drier climate at high altitudes. The δ 13 C signal shows rapid shifts throughout the record and a decreasing trend toward more negative values in the mid-Holocene, suggesting enhanced soil activity. In the short-term trend, Qadisha stalagmites record rapid dry/wet changes on centennial scales, with a tendency to more rapid dry events toward the mid-Holocene. Such changes are characterized by overall good agreement between both geochemical proxies and stalagmite growth and might be affected by the seasonal variations in snow cover. The Qadisha record is in good agreement with other Levantine records, showing more humid conditions from 9 to 7 ka. After 7 ka, a drier climate seems to affect sites at both low- and high-altitude areas. The Qadisha record reflects uniquely mountainous climate characteristics compared with other records, specifically the effect of snow cover and its duration regulating the effective infiltration.
more »
« less
- Award ID(s):
- 2202913
- PAR ID:
- 10451312
- Date Published:
- Journal Name:
- Quaternary Research
- ISSN:
- 0033-5894
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Iberia is predicted under future warming scenarios to be increasingly impacted by drought. While it is known that this region has experienced multiple intervals of enhanced aridity over the Holocene, additional hydroclimate-sensitive records from Iberia are necessary to place current and future drying into a broader perspective. Toward that end, we present a multi-proxy composite record from six well-dated and overlapping speleothems from Buraca Gloriosa (BG) cave, located in western Portugal. The coherence between the six stalagmites in this composite stalagmite record illustrates that climate (not in-cave processes) impacts speleothem isotopic values. This record provides the first high-resolution, precisely dated, terrestrial record of Holocene hydroclimate from west-central Iberia. The BG record reveals that aridity in western Portugal increased secularly from 9.0 ka BP to present, as evidenced by rising values of both carbon (δ13C) and oxygen (δ18O) stable isotope values. This trend tracks the decrease in Northern Hemisphere summer insolation and parallels Iberian margin sea surface temperatures (SST). The increased aridity over the Holocene is consistent with changes in Hadley Circulation and a southward migration of the Intertropical Convergence Zone (ITCZ). Centennial-scale shifts in hydroclimate are coincident with changes in total solar irradiance (TSI) after 4 ka BP. Several major drying events are evident, the most prominent of which was centered around 4.2 ka BP, a feature also noted in other Iberian climate records and coinciding with well-documented regional cultural shifts. Substantially, wetter conditions occurred from 0.8 ka BP to 0.15 ka BP, including much of the ‘Little Ice Age’. This was followed by increasing aridity toward present day. This composite stalagmite proxy record complements oceanic records from coastal Iberia, lacustrine records from inland Iberia, and speleothem records from both northern and southern Spain and depicts the spatial and temporal variability in hydroclimate in Iberia.more » « less
-
Abstract The fluvial geomorphology and stratigraphy on the middle Snake River at Bancroft Springs, Idaho, provide evidence for numerous episodes of Snake River aggradation and incision since the Bonneville Flood at ca. 18 ka. A suite of seven terraces ranging from 20–1 m above modern bankfull elevation records multiple cut-and-fill cycles during the latest Pleistocene and Holocene in response to local base-level controls, variations in sediment supply, and hydroclimate change. Radiocarbon and luminescence dating show that the ages of fluvial aggradation generally coincide with increased sediment supply and likely wetter hydroclimate during onset of the Younger Dryas stadial (ca. 13.2 ka), deglaciation and termination of the Younger Dryas stadial (ca. 11.3 ka), Early Holocene cooling (ca. 8.8 ka), and Neoglacial (ca. 4.5, 2.9, 1.1 ka). Six intervening periods of incision and channel stability may also reflect either reduced sediment supply, drier hydroclimate, or both. The terrace chronology can be correlated to a variety of local and regional paleoclimate proxy records and corresponds well with periods of continental- and global-scale rapid climate change during the Holocene. The fluvial record demonstrates the geomorphic response and sensitivity of large river systems to changes in hydroclimate variability, which has important implications for inferring paleoenvironmental conditions in the region.more » « less
-
Over the last few million years, Africa’s climate exhibits a long-term drying trend with episodes of high climate variability coinciding with the intensification of glacial-interglacial cycles. Of particular interest, is a shift to drier and more variable conditions noted in the Olorgesailie Formation (Kenya) between 500 and 300 thousand years ago (ka) in which Potts et al. (2018) observed a turnover of ~85% of large-body mammalian fauna to smaller-body related taxa and suggested that the shift was an evolutionary response to better adapt to the changing climate. However, an erosional gap in the Olorgesailie record during this time interval means that the cause of this faunal shift is still an outstanding question. To understand East African climate variability during the Mid-Pleistocene, we analyze Lake Malawi drill core MAL 05–1 (~11ºS, 34ºE) to investigate if a specific climatic event stands out as a possible driver of the dramatic change observed in the East African mammal community. We use organic geochemical proxies including branched glycerol diaklyl glycerol tetraethers (brGDGTs; the MBT′5ME index) andleaf wax carbon and deuterium isotopes to develop high-resolution temperature, vegetation, and precipitation records, respectively, between 600 and 200 ka. Results show an abrupt temperature increase of ~9°C occurring in less than 3000 years during Glacial Termination V, which is the Marine Isotope Stage (MIS) 12 to MIS 11 transition at ~330 ka. Preliminary leaf wax deuterium isotopic values show an enrichment that coincides with deglacial warmings suggesting a shift to more arid conditions during interglacial than in glacial periods. This change from a cold/wet glacial to a warm/dry interglacial contrast with the cool/dry pattern of the Last Glacial Maximum (LGM) in East Africa which transitioned to a warm/wet Holocene. Leaf wax carbon isotopes are presently being analyzed to understand past shifts in C3 vs C4 vegetation type, which can be related to climatic conditions. We propose that the major warming and drying during Termination V in East Africa represents a significant abrupt change in the climate of eastern Africa and was a likely driver of the major faunal turnover noted in the region.more » « less
-
Abstract Sub‐centennial oxygen (δ18O) isotopes of ostracod and authigenic calcite from Squanga Lake provides evidence of hydroclimatic extremes and a series of post‐glacial climate system reorganizations for the interior region of northwest Canada. Authigenic calciteδ18O values range from −16‰ to −21‰ and are presently similar to modern lake water and annual precipitation values. Ostracodδ18O record near identical trends with calcite, offset by +1.7 ± 0.6‰. At 11 ka BP (kaBP = thousands of years before 1950), higherδ18O values reflect decreased precipitation−evaporation (P−E) balance from residual ice sheet influences on moisture availability. A trend to lowerδ18O values until ∼8 ka BP reflects a shift to wetter conditions, and reorganization of atmospheric circulation. The last millennium and modern era are relatively dry, though not as dry as the early Holocene extreme. North Pacific climate dynamics remained an important driver of P−E balance in northwest Canada throughout the Holocene.more » « less