Nanohybrids of graphene and two-dimensional (2D) layered transition metal dichalcogenides (TMD) nanostructures can provide a promising substrate for extraordinary surface-enhanced Raman spectroscopy (SERS) due to the combined electromagnetic enhancement on TMD nanostructures via localized surface plasmonic resonance (LSPR) and chemical enhancement on graphene. In these nanohybrid SERS substrates, the LSPR on TMD nanostructures is affected by the TMD morphology. Herein, we report the first successful growth of MoS2 nanodonuts (N-donuts) on graphene using a vapor transport process on graphene. Using Rhodamine 6G (R6G) as a probe, SERS spectra were compared on MoS2 N-donuts/graphene nanohybrids substrates. A remarkably high R6G SERS sensitivity up to 2 × 10−12 M has been obtained, which can be attributed to the more robust LSPR effect than in other TMD nanostructures such as nanodiscs as suggested by the finite-difference time-domain simulation. This result demonstrates that non-metallic TMD/graphene nanohybrids substrates can have SERS sensitivity up to one order of magnitude higher than that reported on the plasmonic metal nanostructures/2D materials SERS substrates, providing a promising scheme for high-sensitivity, low-cost applications for biosensing.
more »
« less
Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin
Abstract Metal film over nanosphere (FON) substrates are a mainstay of surface‐enhanced Raman scattering (SERS) measurements because they are inexpensive to fabricate, have predictable enhancement factors, and are relatively robust. This work includes a systematic investigation of how the three major FON fabrication parameters—nanosphere size, deposited metal thickness, and metal choice—impact the resulting localized surface plasmon resonance (LSPR). With these three parameters, it is quite simple to fabricate FONs with an optimal LSPR for SERS experiments with various excitation wavelengths. Some SERS experiments require that the substrates be incubated in organic solvents that have the potential to damage the substrate; as such, this work also explores how solvent incubation impacts the physical and optical properties of the FON substrate. Although no significant increase in physical damage is obvious, the LSPR does shift significantly. Finally, these optimized FONs were employed for the sensing of an important allergen, soybean agglutinin. The FONs were modified with a glycopolymer that has affinity for soybean agglutinin and clear Raman bands demonstrate detection of 10 μg/ml soybean agglutinin. Overall, this work serves the dual purpose of both sharing critical details about FON design and demonstrating detection of an important lectin analyte.
more »
« less
- PAR ID:
- 10452799
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Raman Spectroscopy
- Volume:
- 52
- Issue:
- 2
- ISSN:
- 0377-0486
- Format(s):
- Medium: X Size: p. 482-490
- Size(s):
- p. 482-490
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters is conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined.more » « less
-
Abstract Two‐dimensional transition metal dichalcogenides (TMDs)/graphene van der Waals (vdW) heterostructures integrate the superior light–solid interaction in TMDs and charge mobility in graphene, and therefore are promising for surface‐enhanced Raman spectroscopy (SERS). Herein, a novel TMD (MoS2and WS2) nanodome/graphene vdW heterostructure SERS substrate, on which an extraordinary SERS sensitivity is achieved, is reported. Using fluorescent Rhodamine 6G (R6G) as probe molecules, the SERS sensitivity is in the range of 10−11to 10−12mon the TMD nanodomes/graphene vdW heterostructure substrates using 532 nm Raman excitation, which is comparable to the best sensitivity reported so far using plasmonic metal nanostructures/graphene SERS substrates, and is more than three orders of magnitude higher than that on single‐layer TMD and graphene substrates. Density functional theory simulation reveals enhanced electric dipole moments and dipole–dipole interaction at the TMD/graphene vdW interface, yielding an effective means to facilitate an external electrostatic perturbation on the graphene surface and charge transfer. This not only promotes chemical enhancement on SERS, but also enables electromagnetic enhancement of SERS through the excitation of localized surface plasmonic resonance on the TMD nanodomes. This TMD nanodome/graphene vdW heterostructure is therefore promising for commercial applications in high‐performance optoelectronics and sensing.more » « less
-
Chen, Zan (Ed.)Inelastic scattering from molecules because of vibrational modes produces unique Raman shifts, allowing these analytes to be detected with high specificity. Because Raman scattering is weak, surface-enhanced Raman scattering (SERS) has been used as a label-free technique for the detection of a variety of analytes at low concentrations. Using simple solution-based colloidal processing techniques, we have fabricated gold-coated carbon-black nanoparticles that show enhanced Raman activity. By varying the fabrication conditions, we create particles of different surface morphologies, allowing control over the peak wavelength for localized surface plasmon resonance (LSPR). By matching the LSPR wavelength to the incident laser wavelength, we get the highest signal from two model analytes, 4-nitrobenzenethiol (4-NBT) and Congo Red (CR). Our straightforward room temperature solution-based approach for making tunable SERS-active particles expands the range of incident radiation wavelengths that can be used for the detection of analytes using Raman scattering.more » « less
-
Surface-enhanced Raman spectroscopy (SERS) has great potential as an analytical technique for environmental analyses. In this study, we fabricated highly porous gold (Au) supraparticles ( i.e. , ∼100 μm diameter agglomerates of primary nano-sized particles) and evaluated their applicability as SERS substrates for the sensitive detection of environmental contaminants. Facile supraparticle fabrication was achieved by evaporating a droplet containing an Au and polystyrene (PS) nanoparticle mixture on a superamphiphobic nanofilament substrate. Porous Au supraparticles were obtained through the removal of the PS phase by calcination at 500 °C. The porosity of the Au supraparticles was readily adjusted by varying the volumetric ratios of Au and PS nanoparticles. Six environmental contaminants (malachite green isothiocyanate, rhodamine B, benzenethiol, atrazine, adenine, and gene segment) were successfully adsorbed to the porous Au supraparticles, and their distinct SERS spectra were obtained. The observed linear dependence of the characteristic Raman peak intensity for each environmental contaminant on its aqueous concentration reveals the quantitative SERS detection capability by porous Au supraparticles. The limit of detection (LOD) for the six environmental contaminants ranged from ∼10 nM to ∼10 μM, which depends on analyte affinity to the porous Au supraparticles and analyte intrinsic Raman cross-sections. The porous Au supraparticles enabled multiplex SERS detection and maintained comparable SERS detection sensitivity in wastewater influent. Overall, we envision that the Au supraparticles can potentially serve as practical and sensitive SERS devices for environmental analysis applications.more » « less
An official website of the United States government
