skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subdiffraction Limited Photonic Funneling of Light
Abstract Efficient optical coupling between nano‐ and macroscale areas is strongly suppressed by the diffraction limit. This work presents a possible solution to this fundamental problem via the experimental fabrication, characterization, and comprehensive theoretical analysis of structures referred to as “photonic funnels.” The funnels represent a novel composite material platform that combines hyperbolic dielectric response with geometry‐assisted optical confinement. Experimentally, funneling of mid‐infrared light through openings with diameters as small as 1/25th of the free space wavelength (λ0) is demonstrated. By analyzing the optical response of the funnels, as fabricated, both confinement of mid‐infrared radiation to the λ0/25 areas and efficient outcoupling of light from deep subwavelength areas are confirmed.  more » « less
Award ID(s):
2004298 1629330 2004422 1926187
PAR ID:
10454263
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
8
Issue:
24
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Photonic funnels, microscale conical waveguides that have been recently realized in the mid-IR spectral range with the help of an all-semiconductor designer metal material platform, are promising devices for efficient coupling of light between the nanoscales and macroscales. Previous analyses of photonic funnels have focused on structures with highly conductive claddings. Here, we analyze the performance of funnels with and without cladding, as a function of material properties, operating wavelength, and geometry. We demonstrate that bare (cladding-free) funnels enable orders-of-magnitude higher enhancement of local intensity than their clad counterparts, with virtually no loss of confinement, and relate this phenomenon to anomalous reflection of light at the anisotropic material–air interface. Intensity enhancement of the order of 25, with confinement of light to wavelength/20 scale, is demonstrated. Efficient extraction of light from nanoscale areas is predicted. 
    more » « less
  2. Abstract Existing techniques for optical trapping and manipulation of microscopic objects, such as optical tweezers and plasmonic tweezers, are mostly based on visible and near‐infrared light sources. As it is in general more difficult to confine light to a specific length scale at a longer wavelength, these optical trapping and manipulation techniques have not been extended to the mid‐infrared spectral region or beyond. Here, it is shown that by taking advantage of the fact that many materials have large permittivity dispersions in the mid‐infrared region, optical trapping and manipulation using mid‐infrared excitation can achieve additional functionalities and benefits compared to the existing techniques in the visible and near‐infrared regions. In particular, it is demonstrated that by exploiting the exceedingly high field confinement and large frequency tunability of mid‐infrared graphene plasmonics, high‐performance and versatile mid‐infrared plasmonic tweezers can be realized to selectively trap or repel nanoscale objects of different materials in a dynamically reconfigurable way. This new technique can be utilized for sorting, filtering, and fractionating nanoscale objects in a mixture. 
    more » « less
  3. Abstract The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2substrates limit operation to wavelengthsλ ≲ 4 μm. Here we overcome these challenges with a chalcogenide glass-on-CaF2PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation toλ = 5.2 μm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up tof = 1 MHz, and a predicted 3-dB bandwidth off3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications. 
    more » « less
  4. The wave nature of light sets a fundamental diffraction limit that challenges confinement and control of light in nanoscale structures with dimensions significantly smaller than the wavelength. Here, we study light–matter interaction in van der Waals MoS2nanophotonic devices. We show that light can be coupled and guided in structures with dimensions as small as ≃λ/16 (∼60nm at 1000 nm excitation wavelength), while offering unprecedented optical field confinement. This deep subwavelength optical field confinement is achieved by exploiting strong lightwave dispersion in MoS2. We further study the performance of a range of nanophotonic integrated devices via far- and near-field measurements. Our near-field measurements reveal detailed imaging of excitation, evolution, and guidance of fields in nanostructured MoS2, whereas our far-field study examines light excitation and coupling to highly confined integrated photonics. Nanophotonics at a fraction of a wavelength demonstrated here could dramatically reduce the size of integrated photonic devices and opto-electronic circuits with potential applications in optical information science and engineering. 
    more » « less
  5. Plasmonic materials, and their ability to enable strong concentration of optical fields, have offered a tantalizing foundation for the demonstration of sub-diffraction-limit photonic devices. However, practical and scalable plasmonic optoelectronics for real world applications remain elusive. In this work, we present an infrared photodetector leveraging a device architecture consisting of a “designer” epitaxial plasmonic metal integrated with a quantum-engineered detector structure, all in a mature III-V semiconductor material system. Incident light is coupled into surface plasmon-polariton modes at the detector/designer metal interface, and the strong confinement of these modes allows for a sub-diffractive ( ∼<#comment/> λ<#comment/> 0 / 33 ) detector absorber layer thickness, effectively decoupling the detector’s absorption efficiency and dark current. We demonstrate high-performance detectors operating at non-cryogenic temperatures ( T = 195 K ), without sacrificing external quantum efficiency, and superior to well-established and commercially available detectors. This work provides a practical and scalable plasmonic optoelectronic device architecture with real world mid-infrared applications. 
    more » « less