skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Method for solving chance constrained optimal control problems using biased kernel density estimators
Summary A method is developed to numerically solve chance constrained optimal control problems. The chance constraints are reformulated as nonlinear constraints that retain the probability properties of the original constraint. The reformulation transforms the chance constrained optimal control problem into a deterministic optimal control problem that can be solved numerically. The new method developed in this paper approximates the chance constraints using Markov Chain Monte Carlo sampling and kernel density estimators whose kernels have integral functions that bound the indicator function. The nonlinear constraints resulting from the application of kernel density estimators are designed with bounds that do not violate the bounds of the original chance constraint. The method is tested on a nontrivial chance constrained modification of a soft lunar landing optimal control problem and the results are compared with results obtained using a conservative deterministic formulation of the optimal control problem. Additionally, the method is tested on a complex chance constrained unmanned aerial vehicle problem. The results show that this new method can be used to reliably solve chance constrained optimal control problems.  more » « less
Award ID(s):
1819002
PAR ID:
10454264
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Optimal Control Applications and Methods
Volume:
42
Issue:
1
ISSN:
0143-2087
Format(s):
Medium: X Size: p. 330-354
Size(s):
p. 330-354
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A method is developed for transforming chance constrained optimization problems to a form numerically solvable. The transformation is accomplished by reformulating the chance constraints as nonlinear constraints using a method that combines the previously developed Split-Bernstein approximation and kernel density estimator (KDE) methods. The Split-Bernstein approximation in a particular form is a biased kernel density estimator. The bias of this kernel leads to a nonlinear approximation that does not violate the bounds of the original chance constraint. The method of applying biased KDEs to reformulate chance constraints as nonlinear constraints transforms the chance constrained optimization problem to a deterministic optimization problems that retains key properties of the chance constrained optimization problem and can be solved numerically. This method can be applied to chance constrained optimal control problems. As a result, the Split-Bernstein and Gaussian kernels are applied to a chance constrained optimal control problem and the results are compared. 
    more » « less
  2. We present a data-driven algorithm for efficiently computing stochastic control policies for general joint chance constrained optimal control problems. Our approach leverages the theory of kernel distribution embeddings, which allows representing expectation operators as inner products in a reproducing kernel Hilbert space. This framework enables approximately reformulating the original problem using a dataset of observed trajectories from the system without imposing prior assumptions on the parameterization of the system dynamics or the structure of the uncertainty. By optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original problem to a linear program over the control parameters that can be efficiently solved using standard convex optimization techniques. We demonstrate our proposed approach in simulation on a system with nonlinear non-Markovian dynamics navigating in a cluttered environment. 
    more » « less
  3. A robust optimal guidance strategy is proposed. The guidance strategy is designed to reduce the possibility of violations in inequality path constraints in the presence of modeling errors and perturbations. The guidance strategy solves a constrained nonlinear optimal control problem at the start of every guidance cycle. In order to reduce the possibility of path constraint violations, the objective functional for the optimal control problem is modified at the start of a guidance cycle if it is found that the solution lies within a user-specified threshold of a path constraint limit. The modified objective functional is designed such that it maximizes the margin in the solution relative to the path constraint limit that could potentially be violated in the future. The method is validated on a path-constrained Mars entry problem where the reference model and the perturbed model differ in their atmospheric density. It is found for the example studied that the approach significantly improves the path constraint margin and maintains feasibility relative to a guidance approach that maintains the original objective functional for each guidance update. 
    more » « less
  4. Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs) have been proposed to numerically solve convex optimization problems that ensure the control input to stay in the safe set. Model Predictive Path Integral (MPPI) control uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic functions. In this paper, we use Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the samplingbased algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We also show that our algorithm needs fewer samples than the original MPPI algorithm does by providing a sampling complexity analysis. 
    more » « less
  5. A structure detection method is developed for solving state-variable inequality path con- strained optimal control problems. The method obtains estimates of activation and deactiva- tion times of active state-variable inequality path constraints (SVICs), and subsequently al- lows for the times to be included as decision variables in the optimization process. Once the identification step is completed, the method partitions the problem into a multiple-domain formulation consisting of constrained and unconstrained domains. Within each domain, Legendre-Gauss-Radau (LGR) orthogonal direct collocation is used to transcribe the infinite- dimensional optimal control problem into a finite-dimensional nonlinear programming (NLP) problem. Within constrained domains, the corresponding time derivative of the active SVICs that are explicit in the control are enforced as equality path constraints, and at the beginning of the constrained domains, the necessary tangency conditions are enforced. The accuracy of the proposed method is demonstrated on a well-known optimal control problem where the analytical solution contains a state constrained arc. 
    more » « less