Abstract Host susceptibility may be critical for the spread of infectious disease, and understanding its basis is a goal of ecological immunology. Here, we employed a series of mechanistic tests to evaluate four factors commonly assumed to influence host susceptibility: parasite exposure, barriers to infection, immune responses, and body size. We tested these factors in an aquatic host–parasite system (Daphnia dentifera and the fungal parasite, Metschnikowia bicuspidata) using both laboratory-reared and field-collected hosts. We found support for each factor as a driver of infection. Elevated parasite exposure, which occurs through consumption of infectious fungal spores, increased a host’s probability of infection. The host’s gut epithelium functioned as a barrier to infection, but in the opposite manner from which we predicted: thinner anterior gut epithelia were more resistant to infectious spores than thick epithelia. This relationship may be mediated by structural attributes associated with epithelial cell height. Fungal spores that breached the host’s gut barrier elicited an intensity-dependent hemocyte response that decreased the probability of infection for some Daphnia. Although larger body sizes were associated with increased levels of spore ingestion, larger hosts also had lower frequencies of parasite attack, less penetrable gut barriers, and stronger hemocyte responses. After investigating which mechanisms underlie host susceptibility, we asked: do these four factors contribute equally or asymmetrically to the outcome of infection? An information-theoretic approach revealed that host immune defenses (barriers and immune responses) played the strongest roles in mediating infection outcomes. These two immunological traits may be valuable metrics for linking host susceptibility to the spread of infectious disease.
more »
« less
Parasite exposure and host susceptibility jointly drive the emergence of epidemics
Abstract Parasite transmission is thought to depend on both parasite exposure and host susceptibility to infection; however, the relative contribution of these two factors to epidemics remains unclear. We used interactions between an aquatic host and its fungal parasite to evaluate how parasite exposure and host susceptibility interact to drive epidemics. In six lakes, we tracked the following factors from pre‐epidemic to epidemic emergence: (1) parasite exposure (measured observationally as fungal spores attacking wild‐caught hosts), (2) host susceptibility (measured experimentally as the number of fungal spores required to produce terminal infection), (3) host susceptibility traits (barrier resistance and internal clearance, both quantified with experimental assays), and (4) parasite prevalence (measured observationally from wild‐caught hosts). Tracking these factors over 6 months and in almost 7,000 wild‐caught hosts provided key information on the drivers of epidemics. We found that epidemics depended critically on the interaction of exposure and susceptibility; epidemics only emerged when a host population’s level of exposure exceeded its individuals’ capacity for recovery. Additionally, we found that host internal clearance traits (the hemocyte response) were critical in regulating epidemics. Our study provides an empirical demonstration of how parasite exposure and host susceptibility interact to inhibit or drive disease in natural systems and demonstrates that epidemics can be delayed by asynchronicity in the two processes. Finally, our results highlight how individual host traits can scale up to influence broad epidemiological patterns.
more »
« less
- PAR ID:
- 10454394
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 102
- Issue:
- 2
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Transmission from one host to another is a crucial component of parasite fitness. For some aquatic parasites, transmission occurs via a free‐living stage that spends time in the water, awaiting an encounter with a new host. These parasite transmission stages can be impacted by biotic and abiotic factors that influence the parasite's ability to successfully infect or grow in a new host.Here we tested whether time spent in the water column and/or exposure to common cyanobacterial toxins impacted parasite transmission stages. More specifically, we tested whether the infectivity, within host growth, and virulence of the fungal parasiteMetschnikowia bicuspidatachanged as a result of time spent in the water or from exposure to cyanotoxins in the water column. We exposed parasite transmission spores to different levels of one of two ecologically important cyanotoxins, microcystin‐LR and anatoxin‐a, and factorially manipulated the amount of time spores were incubated in water. We removed the toxins and used those same spores to infect one genotype of the common lake zooplanktonDaphnia dentifera.We found that cyanotoxins did not impact parasite fitness (infection prevalence and spore yield per infected host) or virulence (host lifetime reproduction and survivorship) at the tested concentrations (10 and 30 μg/L). However, we found that spending longer as a transmission spore decreased a spore's chances for successful infection: spores that were only incubated for 24 hr infected approximately 75% of exposed hosts, whereas spores incubated for 10 days infected less than 50% of exposed hosts.We also found a negative relationship between the final spore yield from infected hosts and the proportion of hosts that became infected. In treatments where spores spent longer in the water column prior to encountering a host, infection prevalence was lower (indicating lower per spore infectivity), but each infected host yielded more spores at the end of infection. We hypothesise that this pattern may result from intraspecific parasite competition within the host.Overall, these results suggest that transmission spores of this parasite are not strongly influenced by cyanotoxins in the water column, but that other aspects of spending time in the water strongly influence parasite fitness.more » « less
-
Co-infections of hosts by multiple pathogen species are ubiquitous, but predicting their impact on disease remains challenging. Interactions between co-infecting pathogens within hosts can alter pathogen transmission, with the impact on transmission typically dependent on the relative arrival order of pathogens within hosts (within-host priority effects). However, it is unclear how these within-host priority effects influence multi-pathogen epidemics, particularly when the arrival order of pathogens at the host-population scale varies. Here, we combined models and experiments with zooplankton and their naturally co-occurring fungal and bacterial pathogens to examine how within-host priority effects influence multi-pathogen epidemics. Epidemiological models parametrized with within-host priority effects measured at the single-host scale predicted that advancing the start date of bacterial epidemics relative to fungal epidemics would decrease the mean bacterial prevalence in a multi-pathogen setting, while models without within-host priority effects predicted the opposite effect. We tested these predictions with experimental multi-pathogen epidemics. Empirical dynamics matched predictions from the model including within-host priority effects, providing evidence that within-host priority effects influenced epidemic dynamics. Overall, within-host priority effects may be a key element of predicting multi-pathogen epidemic dynamics in the future, particularly as shifting disease phenology alters the order of infection within hosts.more » « less
-
Influence of melatonin on the successful infection of Daphnia dentifera by Metschnikowia bicuspidataAbstract The levels of the hormone melatonin fluctuate daily, with higher concentrations often found at night. These fluctuations likely influence multiple aspects of physiology, including the immune response. We demonstrated that the addition of exogenous melatonin increased the proportion of the freshwater zooplanktonDaphnia dentiferathat became infected by the fungal pathogenMetschnikowia bicuspidata, during the day but not at night. To determine the stage of this host–pathogen interaction at which melatonin may increase susceptibility, we conducted a series of laboratory experiments in which we raisedDaphniain the presence and absence of exogenous melatonin. To complete its life cycle,Metschnikowiamust encounter a foraging host, overcome the host's barrier resistance (gut wall), and evade the host's immune response (internal clearance). We quantified encounter rate by measuring the gut passage time and the number of spores that entered the gut. We also measured the number of spores that successfully entered the body cavity (barrier resistance) and the hemocyte response to spores entering the body cavity (one metric of internal clearance). Finally, we quantified the effect of exogenous melatonin on triggering molting. The addition of exogenous melatonin lengthened gut passage time and decreased the number of spores present in the gut. We found no effect of melatonin on the percentage of gut spores successfully entering the host's body cavity, nor on the hemocyte response. Melatonin is known to influence the timing of molting and hosts that molted during exposure were more likely to become infected, likely due to a decrease in barrier resistance. In a fully factorial experiment, there was a high death rate, low infection rate, and therefore no discernible effect of melatonin on molting, nor molting or melatonin on infection. Our results provide insight into the stages of infection where melatonin does and does not have significant effects.more » « less
-
Theory often predicts that host populations should evolve greater resistance when parasites become abundant. Furthermore, that evolutionary response could ameliorate declines in host populations during epidemics. Here, we argue for an update: when all host genotypes become sufficiently infected, higher parasite abundance can select for lower resistance because its cost exceeds its benefit. We illustrate such a “resistance is futile” outcome with mathematical and empirical approaches. First, we analyzed an eco-evolutionary model of parasites, hosts, and hosts’ resources. We determined eco-evolutionary outcomes for prevalence, host density, and resistance (mathematically, “transmission rate”) along ecological and trait gradients that alter parasite abundance. With high enough parasite abundance, hosts evolve lower resistance, amplifying infection prevalence and decreasing host density. In support of these results, a higher supply of nutrients drove larger epidemics of survival-reducing fungal parasites in a mesocosm experiment. In two-genotype treatments, zooplankton hosts evolved less resistance under high-nutrient conditions than under low-nutrient conditions. Less resistance, in turn, was associated with higher infection prevalence and lower host density. Finally, in an analysis of naturally occurring epidemics, we found a broad, bimodal distribution of epidemic sizes consistent with the resistance is futile prediction of the eco-evolutionary model. Together, the model and experiment, supplemented by the field pattern, support predictions that drivers of high parasite abundance can lead to the evolution of lower resistance. Hence, under certain conditions, the most fit strategy for individual hosts exacerbates prevalence and depresses host populations.more » « less
An official website of the United States government
