Abstract This study presents the first continuous observations of Iceland Scotland Overflow Water (ISOW) passing through the Bight Fracture Zone (BFZ), the northernmost deep bathymetric channel across the Reykjanes Ridge between the Iceland and Irminger Basins in the subpolar North Atlantic. Data from two 2‐year moorings, measuring temperature, salinity, and current velocity from 2015 to 2017, along with a set of deep ISOW‐embedded RAFOS floats, are used to investigate ISOW transport and water property variability through the BFZ, as well as advective pathways between the Iceland and Irminger Basins. The mooring‐derived record‐mean ISOW transport through the BFZ was −0.59 ± 0.27 × 1e6 m3/s (westward) and varied seasonally with weaker transport in winter and stronger transport in summer. Flow direction of ISOW through the BFZ was consistently westward except in winter, when week‐long flow reversals were frequently observed. The previously reported subpolar North Atlantic freshening event of the 2010s is evident in the BFZ mooring records beginning about January 2017. About one‐quarter of floats deployed in ISOW at 1800‐m depth upstream in the Iceland Basin show a direct advective pathway into the BFZ that appears to be primarily determined by bathymetry. Another quarter of the floats crossed over the ridge to the Irminger Sea through other gaps prior to reaching the Charlie‐Gibbs Fracture Zone.
more »
« less
Transport and Evolution of the East Reykjanes Ridge Current
Abstract This study of the first continuous multiyear observations of the East Reykjanes Ridge Current (ERRC) reveals a highly variable, mostly barotropic southwestward flow with a mean transport of 10–13 Sv. The ERRC effectively acts as a western boundary current in the Iceland Basin on the eastern flank of the Reykjanes Ridge. As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), continuous measurements of the ERRC have been maintained for the first time using acoustic Doppler current profilers, current meters, and dynamic height moorings at six mooring sites near 58°N since 2014. Together with satellite altimetry and Argo profile and drift data, the mean transport, synoptic variability, water mass properties, and upstream and downstream pathways of the ERRC are examined. Results show that the ERRC forms in the northeastern Iceland Basin at the convergence of surface waters from the North Atlantic Current and deeper Icelandic Slope Water formed along the Iceland‐Faroe Ridge. The ERRC becomes denser as it cools and freshens along the northern and western topography of the Basin before retroflecting over the Reykjanes Ridge near 59°N into the Irminger Current. Analysis of the flow‐weighted density changes along the ERRC's path reveals that it is responsible for about one third of the net potential density change of waters circulating around the rim of the subpolar gyre.
more »
« less
- PAR ID:
- 10454526
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 125
- Issue:
- 10
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Iceland Scotland Overflow Water (ISOW) plume supplies approximately a third of the production of North Atlantic Deep Water and is a key component of the meridional overturning circulation (MOC). The Overturning in the Subpolar North Atlantic Program (OSNAP) mooring array in the Iceland Basin has provided high‐resolution observations of ISOW from 2014 to 2020. The ISOW plume forms a deep western boundary current along the eastern flank of Reykjanes Ridge, and its total transport varies by greater than a factor of two on intra‐seasonal timescales. EOF analysis of moored current meter records reveal two dominant modes of velocity variance. The first mode explains roughly 20% of the variance and shows a bottom intensified structure concentrated in the rift valley that runs parallel to the ridge axis. The transport anomaly reconstructed from the first mode explains nearly 80% of the total ISOW plume transport variance. The second mode accounts for 15% of velocity variance, but only 5% of the transport variance. The geostrophically estimated transport (2.9 Sv) recovers only 70% of the total ISOW transport along the ridge flank estimated from the direct current meter observations (4.2 Sv), implying a significant ageostrophic component of ISOW mean transport and variability. Ageostrophic flow is strongly linked to the leading mode of velocity variability within the rift valley. The ISOW transport variability along the upper and middle part of the ridge is further shown to correlate with changes in the strength of deep MOC limb across the basin‐wide OSNAP array.more » « less
-
Using vessel-mounted acoustic Doppler current profiler data from four different routes between Scotland, Iceland and Greenland, we map out the mean flow of water in the top 400 m of the northeastern North Atlantic. The poleward transport east of the Reykjanes Ridge (RR) decreases from 8.5 to 10 Sv (1 Sverdrup 106 m3 s1) at 59.58N to 618N to 6 Sv crossing the IcelandFaroesScotland Ridge. The two longest 1200 km transport integrals have 1.40.94 Sv uncertainty, respectively. The overall decrease in transport can in large measure be accounted for by a 1.5 Sv flow across the RR into the Irminger Sea north of 59.58N and by a 0.5 Sv overflow of dense water along the IcelandFaroes Ridge. A remaining 0.5 Sv flux divergence is at the edge of detectability, but if real could be accounted for through wintertime convection to 400 m and densification of upper ocean water. The topography of the Iceland Basin and the banks west of Scotland play a fundamental role in controlling flow pathways towards and past Iceland, the Faroes and Scotland. Most water flows north unimpeded through the Iceland Basin, some in the centre of the basin along the Maury Channel, and some along Hatton Bank, turning east along the northern slopes of George Bligh Bank, Lousy Bank and Bill Bailey’s Bank, whereupon the flow splits with 3 Sv turning northwest towards the IcelandFaroes Ridge and the remainder continuing east towards and north of the Wyville-Thomson Ridge (WTR) to the Scotland slope thereby increasing the Slope Current transport from 1.5 Sv south of the WTR to 3.5 Sv in the FaroesShetland Channelmore » « less
-
Abstract Recently introduced in oceanography to interpret the near surface circulation, Transition Path Theory ( TPT ) is a methodology that rigorously characterizes ensembles of trajectory pieces flowing out from a source last and into a target next, i.e., those that most productively contribute to transport. Here we use TPT to frame, in a statistically more robust fashion than earlier analysis, equatorward routes of North Atlantic Deep Water (NADW) in the subpolar North Atlantic. TPT is applied on all available RAFOS and Argo floats in the area by means of a discretization of the Lagrangian dynamics described by their trajectories. By considering floats at different depths, we investigate transition paths of NADW in its upper (UNADW) and lower (LNADW) layers. We find that the majority of UNADW transition paths sourced in the Labrador and southwestern Irminger Seas reach the western side of a target arranged zonally along the southern edge of the subpolar North Atlantic domain visited by the floats. This is accomplished in the form of a well-organized deep boundary current (DBC). LNADW transition paths sourced west of the Reykjanes Ridge reveal a similar pattern, while those sourced east of the ridge are found to hit the western side of the target via a DBC and also several other places along it in a less organized fashion, indicating southward flow along the eastern and western flanks of the Mid-Atlantic Ridge. Naked-eye inspection of trajectories suggest generally much more diffusive equatorward NADW routes. A source-independent dynamical decomposition of the flow domain into analogous backward-time basins of attraction, beyond the reach of direct inspection of trajectories, reveals a much wider influence of the western side of the target for UNADW than for LNADW. For UNADW, the average expected duration of the pathways from the Labrador and Irminger Seas was found to be of 2 to 3 years. For LNADW, the duration was found to be influenced by the Reykjanes Ridge, being as long as 8 years from the western side of the ridge and of about 3 years on average from its eastern side.more » « less
-
Abstract Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re‐examine the traditional interpretation of pathways and property variability for the AMOC lower limb from the subpolar gyre to 26.5°N. In order to better understand these connections, Lagrangian experiments were conducted within an eddy‐rich ocean model to track upper North Atlantic Deep Water (uNADW), defined by density, between the OSNAP line and 26.5°N as well as within the Labrador Sea. The experiments reveal that 77% of uNADW at 26.5°N is directly advected from the OSNAP West section along the boundary current and interior pathways west of the Mid‐Atlantic Ridge. More precisely, the Labrador Sea is a main gateway for uNADW sourced from the Irminger Sea, while particles connecting OSNAP East to 26.5°N are exclusively advected from the Iceland Basin and Rockall Trough along the eastern flank of the Mid‐Atlantic Ridge. Although the pathways between OSNAP West and 26.5°N are only associated with a net formation of 1.1 Sv into the uNADW layer, they show large density changes within the layer. Similarly, as the particles transit through the Labrador Sea, they undergo substantial freshening and cooling that contributes to further densification within the uNADW layer.more » « less
An official website of the United States government
