Marine biofouling is a complex and dynamic process that significantly increases the carbon emissions from the maritime industry by increasing drag losses. However, there are no existing non‐toxic marine paints that can achieve both effective fouling reduction and efficient fouling release. Inspired by antifouling strategies in nature, herein, a superoleophobic zwitterionic nanowire coating with a nanostructured hydration layer is introduced, which exhibits simultaneous fouling reduction and release performance. The zwitterionic nanowires demonstrate >25% improvement in fouling reduction compared to state‐of‐the‐art antifouling nanostructures, and four times higher fouling‐release compared to conventional zwitterionic coatings. Fouling release is successfully achieved under a wall shear force that is four orders of magnitude lower than regular water jet cleaning. The mechanism of this simultaneous fouling reduction and release behavior is explored, and it is found that a combination of 1) a mechanical biocidal effect from the nanowire geometry, and 2) low interfacial adhesion resulting from the nanostructured hydration layer, are the major contributing factors. These findings provide insights into the design of nanostructured coatings with simultaneous fouling reduction and release. The newly established synthesis procedure for the zwitterionic nanowires opens new pathways for implementation as antifouling coatings in the maritime industry and biomedical devices.
more »
« less
Rational Design of Transparent Nanowire Architectures with Tunable Geometries for Preventing Marine Fouling
Abstract Marine biofouling is a sticky global problem that hinders maritime industries. Various microscale surface structures inspired by marine biological species have been explored for their anti‐fouling properties. However, systematic studies of anti‐marine‐fouling performance on surface architectures with characteristic length‐scales spanning from below 100 nm to greater than 10 µm are generally lacking. Herein, a study on the rational design and fabrication of ZnO/Al2O3core–shell nanowire architectures with tunable geometries (length, spacing, and branching) and surface chemistry is presented. The ability of the nanowires to significantly delay or prevent marine biofouling is demonstrated. Compared to planar surfaces, hydrophilic nanowires can reduce fouling coverage by up to ≈60% after 20 days. The fouling reduction mechanism is mainly due to two geometric effects: reduced effective settlement area and mechanical cell penetration. Additionally, superhydrophobic nanowires can completely prevent marine biofouling for up to 22 days. The nanowire surfaces are transparent across the visible spectrum, making them applicable to windows and oceanographic sensors. Through the rational control of surface nano‐architectures, the coupled relationships between wettability, transparency, and anti‐biofouling performance are identified. It is envisioned that the insights gained from the work can be used to systematically design surfaces that reduce marine biofouling in various industrial settings.
more »
« less
- Award ID(s):
- 1751590
- PAR ID:
- 10455169
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 7
- Issue:
- 17
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Zwitterionic polymers have proven to be a promising non-fouling material that can be applied in the design of selective layers of thin film composite (TFC) membranes. Extending the permeability and usage of TFC membranes have attracted increasing interest in membrane-based desalination processes since water-flux reduction associated with biofouling persist nowadays as a common challenge. By virtue of its strong hydration, this polymer category is very useful to counteract biofouling in marine and biomedical systems, but the benefits from their application in membrane technology are still emerging. The efficacy of the non-fouling property as a function of the polymer’s molecular weight remains unknown. In pursuit of that vision, this study fosters new scientific insights via probing different molecular weights of poly(carboxybetain methacrylate) (PCBMA) coated on the surface as a selective layer for the prepared TFC membranes. The coated zwitterionic membranes (zM) exhibited excellent performance to prevent water flux decay in a bench scale forward osmosis system. The prepared zM membranes revealed enhanced hydrophilic properties and retained its operational water-flux when compared to the control. Our results suggest that using an intermediate size molecular weight (PCBMA Mn 50,000) will result in the best operational performance. The intermediate size resulted in the lowest flux decline rate (Rt) of 0.01±0.001 (zM-50) when compared to the unmodified control membrane 0.56 ± 0.071 (M0) after using a model BSA foulant solution. Furthermore, all coated membranes exhibited similar trends in the observed reverse salt flux profiles as well. The constructed zM membranes will serve as a model to develop further selective layers in the construction of TFC membranes.more » « less
-
The fouling of submerged surfaces detrimentally alters stratum properties. Inorganic and organic foulers alike attach to and accumulate on surfaces when the complex interaction between numerous variables governing attachment and colonization is favourable. Unlike naturally evolved solutions, industrial methods of repellence carry adverse environmental impacts. Mammal fur demonstrates high resistance to fouling; however, our understanding of the intricacies of such performance remains limited. Here, we show that the passive trait of fur to dynamically respond to an external flow field dramatically improves its anti-fouling performance over that of fibres rigidly fixed at both ends. We have previously discovered a statistically significant correlation between a group of flow- and stratum-related properties, and the quantified anti-fouling performance of immobile filaments. In this work, we improve the correlation by considering an additional physical factor, the ability of hair to flex. Our work establishes a parametric framework for the design of passive anti-fouling filamentous structures and invites other disciplines to contribute to the investigation of the anti-fouling prowess of mammalian interfaces.more » « less
-
Growing demands for bio-friendly antifouling surfaces have stimulated the development of new and ever-improving material paradigms. Despite notable progress in bio-friendly coatings, the biofouling problem remains a critical challenge. In addition to biofouling characteristics, mechanically stressed surfaces such as ship hulls, piping systems, and heat exchangers require long-term durability in marine environments. Here, we introduce a new generation of anti-biofouling coatings with superior characteristics and high mechanical, chemical and environmental durability. In these surfaces, we have implemented the new physics of stress localization to minimize the adhesion of bio-species on the coatings. This polymeric material contains dispersed organogels in a high shear modulus matrix. Interfacial cavitation induced at the interface of bio-species and organogel particles leads to stress localization and detachment of bio-species from these surfaces with minimal shear stress. In a comprehensive study, the performance of these surfaces is assessed for both soft and hard biofouling including Ulva , bacteria, diatoms, barnacles and mussels, and is compared with that of state-of-the-art surfaces. These surfaces show Ulva accumulation of less than 1%, minimal bacterial biofilm growth, diatom attachment of 2%, barnacle adhesion of 0.02 MPa and mussel adhesion of 7.5 N. These surfaces promise a new physics-based route to address the biofouling problem and avoid adverse effects of biofouling on the environment and relevant technologies.more » « less
-
Abstract Diatom frustules are a type of porous silicon dioxide microparticle that has long been used in applications ranging from biomedical sensors to dye‐sensitized solar cells. The favorable material properties, enormous surface area, and enhanced light scattering capacity support the promise of diatom frustules as candidates for next generation biomedical devices and energy applications. In this study, the vapor–liquid–solid (VLS) method is employed to incorporate silica nanowires on the surface of diatom frustules. Compared to the original frustule structures, the frustule–nanowire composite material's surface area increases over 3‐fold, and the light scattering ability increases by 10%. By varying the gold catalyst thickness during the VLS process, tuning of the resultant nanowire length/density is achieved. Through material characterization, it is determined that both float growth and root growth processes jointly result in the growth of the silica nanowires. From a thermodynamics point of view, the preferential growth of the silica nanowires on frustules is found to have resulted from the enormous partial surface area of gold nanoparticles on the diatom frustules. The frustule–nanowire composite materials have potential applications in the development of novel biomedical sensing devices and may greatly enhance next generation solar cell performance.more » « less